Improving the Rate Capability of LiFePO4 Electrode by Controlling Particle Size Distribution

被引:15
|
作者
Zhang, Yin [1 ,2 ,3 ,4 ]
Alarco, Jose A. [1 ,2 ]
Nerkar, Jawahar Y. [1 ,2 ]
Best, Adam S. [3 ]
Snook, Graeme A. [5 ]
Talbot, Peter C. [1 ,2 ]
机构
[1] Queensland Univ Technol, Inst Future Environm & Sci, Brisbane, Qld 4001, Australia
[2] Queensland Univ Technol, Fac Engn, Brisbane, Qld 4001, Australia
[3] CSIRO Mfg, Clayton, Vic 3169, Australia
[4] CRRC Qingdao Sifang Rolling Stock Res Inst Co Ltd, Qingdao 266031, Shandong, Peoples R China
[5] CSIRO Mineral Resources, Clayton, Vic 3169, Australia
关键词
LITHIUM MISCIBILITY GAP; X-RAY-DIFFRACTION; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; ANTISITE DEFECTS; PHASE-TRANSITION; OLIVINE LIFEPO4; CONDUCTIVITY; SPECTROSCOPY; DEPENDENCE;
D O I
10.1149/2.0621916jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, the rate performance of a LiFePO4 (LFP) electrode has been enhanced by optimization of the particle size distribution of the LFP particles. Two LFP samples with different particle sizes (similar to 50 and similar to 350 nm) are mixed with various ratios and the electrochemical performance has been evaluated. Reduction of the contact resistance and increase of the Li diffusion coefficient have been achieved. The electrode with a mixing ratio of 50:50 shows an improved initial capacity at C/10 and superior rate capability compared with the two pristine materials. (C) 2019 The Electrochemical Society.
引用
收藏
页码:A4128 / A4135
页数:8
相关论文
共 50 条
  • [1] LiFePO4 particle conductive composite strategies for improving cathode rate capability
    Vicente, Nuria
    Haro, Marta
    Cintora-Juarez, Daniel
    Perez-Vicente, Carlos
    Luis Tirado, Jose
    Ahmad, Shahzada
    Garcia-Belmonte, Germa
    ELECTROCHIMICA ACTA, 2015, 163 : 323 - 329
  • [2] On the High Rate Capability of LiFePO4
    Boovaragavan, Vijayasekaran
    Srinivasan, Venkat
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2011, 33 (29): : 17 - 29
  • [3] The Effect of LiFePO4 Particle Size and Surface Area on the Performance of LiFePO4/Graphite Cells
    Logan, E. R.
    Eldesoky, A.
    Liu, Y.
    Lei, Min
    Yang, Xinhe
    Hebecker, H.
    Luscombe, A.
    Johnson, Michel B.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)
  • [4] Reducing the particle size of LiFePO4 enabled by yeast
    Liang, Hongyu
    Zhang, Lianhong
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (10) : 960 - 962
  • [5] Reducing the particle size of LiFePO4 enabled by yeast
    Hongyu Liang
    Lianhong Zhang
    Russian Journal of Electrochemistry, 2013, 49 : 960 - 962
  • [6] Improvement of Rate Performance of LiFePO4 Cathode with Porous LiFePO4/Activated Carbon Hybrid Electrode Structure
    Tsuda, Takashi
    Ando, Nobuo
    Gunji, Takao
    Tanabe, Toyokazu
    Kaneko, Shingo
    Itagaki, Kaoru
    Soma, Naohiko
    Nakamura, Susumu
    Matsumoto, Futoshi
    ELECTROCHEMISTRY, 2017, 85 (08) : 447 - 450
  • [7] High rate capability of Co-doped LiFePO4/C
    Gao, Haiyan
    Jiao, Lifang
    Yang, Jiaqin
    Qi, Zhan
    Wang, Yijing
    Yuan, Huatang
    ELECTROCHIMICA ACTA, 2013, 97 : 143 - 149
  • [8] High rate capability by sulfur-doping into LiFePO4 matrix
    Okada, K.
    Kimura, I.
    Machida, K.
    RSC ADVANCES, 2018, 8 (11): : 5848 - 5853
  • [9] Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites
    Bobyl, Alexander
    Nam, Sang-Cheol
    Song, Jung-Hoon
    Ivanishchev, Alexander
    Ushakov, Arseni
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (04) : 438 - 452
  • [10] Particle size distribution and electrochemical properties of LiFePO4 prepared by a freeze-drying method
    Zhecheva, E.
    Mladenov, Ml.
    Zlatilova, P.
    Koleva, V.
    Stoyanova, R.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (05) : 848 - 853