g-C3N4 modified by hydroxyl group on the surface prepared by double salt enhanced the visible light photocatalytic activity

被引:16
|
作者
Gao, Yan Hua [1 ]
Zhao, Wen Li [1 ]
Chen, Ying [1 ]
机构
[1] Northeast Petr Univ, Coll Chem & Chem Engn, Daqing 163318, Heilongjiang, Peoples R China
关键词
g-C3N4; Double salt synergy; Hydroxylation; Cyan; MO degradation; CARBON NITRIDE; H-2; EVOLUTION; HYDROGEN EVOLUTION; MESOPOROUS G-C3N4; POROUS G-C3N4; PERFORMANCE; FABRICATION; ACTIVATION; NANOSHEET;
D O I
10.1016/j.diamond.2021.108425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, g-C3N4 was modified by the synergistic effect of double salt KCl-(NH4)(2)CO3, and porous g-C3N4 with hydroxylated surface was prepared. Combined with a series of characterization (XRD, SEM, BET, FTIR, UV-vis DRS and XPS) and density functional theory (DFT) analysis, it is confirmed that KCl can cooperate with ammonium salt (NH4)(2)CO3 to produce rich pore structure, and (NH4)(2)CO3, as an alkaline slow-release agent, can assist KCl to further enhance hydroxylation. KCl-(NH4)(2)CO3 not only plays a synergistic role in pore formation, but also introduces hydroxyl and cyano groups, which improves the hydrophilicity of g-C3N4, promotes the separation efficiency of photo-generated carriers, and is beneficial to enhance the photocatalytic activity. Taking methyl orange (MO) as the model of pollutant degradation, and proposed the possible degradation mechanism. This study provides a simple, efficient and widely applicable method for modifying g-C3N4 to improve its activity.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity
    Li, Zizhen
    Meng, Xiangchao
    Zhang, Zisheng
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (15) : 3979 - 3993
  • [2] Sulfur/g-C3N4 Composites with Enhanced Visible Light Photocatalytic Activity
    Xu, Yao
    Zhang, Wei-De
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (12) : 2611 - 2617
  • [3] Microwave modification of surface hydroxyl density for g-C3N4 with enhanced photocatalytic activity
    An, Na
    Zhao, Yang
    Mao, Zhiyong
    Agrawal, Dinesh Kumar
    Wang, Dajian
    MATERIALS RESEARCH EXPRESS, 2018, 5 (03):
  • [4] Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide
    Chen, Quan-Liang
    Liu, Yi-Ling
    Tong, Li-Ge
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [5] Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation
    Zhang, Wei
    Zhou, Li
    Deng, Huiping
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 423 : 270 - 276
  • [6] Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light
    Ren, Zequn
    Chen, Fangyuan
    Wen, Kangxin
    Lu, Jinfeng
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2020, 389
  • [7] Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity
    Chidhambaram, N.
    Ravichandran, K.
    MATERIALS RESEARCH EXPRESS, 2017, 4 (07):
  • [8] Synthesis and enhanced visible-light photocatalytic activity of wollastonite/g-C3N4 composite
    Yao, Guangyuan
    Sun, Zhiming
    Zheng, Shuilin
    MATERIALS RESEARCH BULLETIN, 2017, 86 : 186 - 193
  • [9] V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity
    Xu, Ruizheng
    Wei, Guiyu
    Xie, Zhemin
    Diao, Sijie
    Wen, Jianfeng
    Tang, Tao
    Jiang, Li
    Li, Ming
    Hu, Guanghui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 970
  • [10] G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity
    Ji, Yuexia
    Cao, Jiafeng
    Jiang, Linqing
    Zhang, Yaohong
    Yi, Zhiguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 9 - 14