Enhanced electrocatalytic reduction of oxygen at CO2-derived Fe-N-B-doped porous carbon

被引:21
|
作者
Byeon, Ayeong [1 ]
Baik, Seoyeon [1 ]
Lee, Jae W. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon, South Korea
关键词
Oxygen reduction reaction catalyst; Fe-N-B-C catalyst; Carbon dioxide; Flue gas conversion; Amorphous carbon; FUEL-CELLS; SUPERCAPACITOR ELECTRODES; COMPOSITE; CATALYSTS; DIOXIDE; BORON; PERFORMANCE; GRAPHENE; ACID; SEPARATION;
D O I
10.1016/j.jcou.2018.04.014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fe-N-B doped carbon catalysts are synthesized directly from flue gas containing CO2. They showed enhanced activity for oxygen reduction reaction in an alkaline electrolyte (1 M NaOH), which is comparable activity of commercial platinum catalysts. The amorphous carbon contains nitrogen species derived from nitrogen gas in flue gas and boron atoms which were originated from the reducing agent of sodium borohydride for the flue gas conversion. The amounts of iron species was controlled from 5% to 55% of synthesized amorphous carbon from flue gas. The sample with 33% of Fe precursor species shows the highest oxygen reduction reaction activity. This is due to the existence of pyridinic nitrogen doping and Fe-N bonding in the carbon network verified by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) analyses. Also, from the microscopic images, the degradation of oxygen reduction reaction activity comes from agglomeration of Fe species. The Fe-N-B-C catalyst shows the promise of stability in acidic conditions and long-term durability for 10,000 cyclic voltammetric cycles.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 50 条
  • [1] Fe nanoparticles embedded in N-doped porous carbon for enhanced electrocatalytic CO2 reduction and Zn-CO2 battery
    Yang, Wenqian
    Xue, Ziqian
    Yang, Jun
    Xian, Jiahui
    Liu, Qinglin
    Fan, Yanan
    Zheng, Kai
    Liao, Peiqin
    Su, Hui
    Liu, Qinghua
    Li, Guangqin
    Su, Cheng-Yong
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 185 - 194
  • [2] B, N Co-Doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction
    Zeng, Kai
    Su, Jianmin
    Cao, Xuecheng
    Zheng, Xiangjun
    Li, Xiaowei
    Tian, Jing-Hua
    Jin, Chao
    Yang, Ruizhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 824 (824)
  • [3] Biomass N/P co-doped porous carbon plates for electrocatalytic oxygen reduction
    Ma, Hongwei
    Guo, Daying
    Wu, Lianhui
    Chen, Xi'an
    MICRO & NANO LETTERS, 2024, 19 (04)
  • [4] Rational design of Fe, N co-doped porous carbon derived from conjugated microporous polymer as an electrocatalytic platform for oxygen reduction reaction
    Sun, Hanxue
    Wang, Juanjuan
    Li, Mengxue
    Jiao, Rui
    Zhu, Zhaoqi
    Li, An
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 673 : 354 - 364
  • [5] Synthesis and electrocatalytic properties of M (Fe, Co),N co-doped porous carbon frameworks for efficient oxygen reduction reaction
    Zhu, Zhaoqi
    Cui, Jie
    Cao, Xiaoying
    Yang, Lijuan
    Sun, Hanxue
    Liang, Weidong
    Li, Jiyan
    Li, An
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (16) : 9504 - 9516
  • [6] Cobalt Nanoparticles Anchored on N-Doped Porous Carbon Derived from Yeast for Enhanced Electrocatalytic Oxygen Reduction Reaction
    Sun, Jiankang
    Wang, Zhengyun
    Xu, You
    Zhang, Tiansui
    Zhu, Deyu
    Li, Guangfang
    Liu, Hongfang
    CHEMSUSCHEM, 2023, 16 (07)
  • [7] Effects of oxygen incorporation into CO2-derived carbon networks on oxygen reduction reaction
    Lee, Jae W.
    Byeon, Ayeong
    Park, Joonho
    Jung, Yousung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [8] Co-Fe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction
    Gao, Zhuo
    Zhang, Pianpian
    Jiang, Rong
    Wang, Hailong
    Zhi, Qianjun
    Yu, Baoqiu
    Jin, Yucheng
    Sun, Tingting
    Jiang, Jianzhuang
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 307
  • [9] Porous Fe, N co-doped carbon with high electrocatalytic oxygen reduction reaction performance in Zn-air battery
    Wang, Mengyang
    Cao, Zuolin
    Li, Longyu
    Ren, Shijie
    CARBON, 2022, 200 : 337 - 346
  • [10] Porous nitrogen-doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO
    Li, Fengwang
    Xue, Mianqi
    Knowles, Gregory P.
    Chen, Lu
    MacFarlane, Douglas R.
    Zhang, Jie
    ELECTROCHIMICA ACTA, 2017, 245 : 561 - 568