Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy

被引:6
|
作者
Fahmy, Ahmed S. [1 ,2 ]
Rowin, Ethan J. [3 ]
Manning, Warren J. [1 ,2 ,4 ]
Maron, Martin S. [3 ]
Nezafat, Reza [1 ,2 ]
机构
[1] Beth Israel Deaconess Med Ctr, Dept Med, Cardiovasc Div, Boston, MA 02215 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Tufts Med Ctr, Hypertroph Cardiomyopathy Ctr, Div Cardiol, Boston, MA 02111 USA
[4] Beth Israel Deaconess Med Ctr, Dept Radiol, 330 Brookline Ave, Boston, MA 02215 USA
来源
基金
美国国家卫生研究院;
关键词
heart failure; hypertrophic cardiomyopathy; machine learning; risk factors; risk stratification; OBSTRUCTION; ALGORITHMS; DISEASE; DEATH;
D O I
10.3389/fcvm.2021.647857
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Development of advanced heart failure (HF) symptoms is the most common adverse pathway in hypertrophic cardiomyopathy (HCM) patients. Currently, there is a limited ability to identify HCM patients at risk of HF. Objectives: In this study, we present a machine learning (ML)-based model to identify individual HCM patients who are at high risk of developing advanced HF symptoms. Methods: From a consecutive cohort of HCM patients evaluated at the Tufts HCM Institute from 2001 to 2018, we extracted a set of 64 potential risk factors measured at baseline. Only patients with New York Heart Association (NYHA) functional class I/II and LV ejection fraction (LVEF) by echocardiography >35% were included. The study cohort (n = 1,427 patients) was split into three disjoint subsets: development (50%), model selection (10%), and independent validation (40%). The least absolute shrinkage and selection operator was used to select the most influential clinical variables. An ensemble of ML classifiers, including logistic regression, was used to identify patients with high risk of developing a HF outcome. Study outcomes were defined as progression to NYHA class III/IV, drop in LVEF below 35%, septal reduction procedure, and/or heart transplantation. Results: During a mean follow-up of 4.7 +/- 3.7 years, advanced HF occurred in 283 (20% out of 1,427) patients. The model features included patients' sex, NYHA class (I or II), HCM type (i.e., obstructive or not), LV wall thickness, LVEF, presence of HF symptoms (e.g., dyspnea, presyncope), comorbidities (atrial fibrillation, hypertension, mitral regurgitation, and systolic anterior motion), and type of cardiac medications. The developed risk stratification model showed strong differentiation power to identify patients at advanced HF risk in the testing dataset (c-statistics = 0.81; 95% confidence interval [CI]: 0.76, 0.86). The model allowed correct identification of high-risk patients with accuracy 74% (CI: 0.70, 0.78), sensitivity 80% (CI: 0.77, 0.83), and specificity 72% (CI: 0.68, 0.76). The model performance was comparable among different sex and age groups. Conclusions: A 5-year risk prediction of progressive HF in HCM patients can be accurately estimated using ML analysis of patients' clinical and imaging parameters. A set of 17 clinical and imaging variables were identified as the most important predictors of progressive HF in HCM.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Development of and Progression of Overt Heart Failure in Nonobstructive Hypertrophic Cardiomyopathy
    Hiemstra, Yasmine L.
    Debonnaire, Philippe
    van Zwet, Erik W.
    Bootsma, Marianne
    Schalij, Martin J.
    Bax, Jeroen J.
    Delgado, Victoria
    Marsan, Nina Ajmone
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2018, 122 (04): : 656 - 662
  • [2] Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning
    Piculin, Matej
    Smole, Tim
    Zunkovic, Bojan
    Kokalj, Enja
    Robnik-Sikonja, Marko
    Kukar, Matjaz
    Fotiadis, Dimitrios, I
    Pezoulas, Vasileios C.
    Tachos, Nikolaos S.
    Barlocco, Fausto
    Mazzarotto, Francesco
    Popovic, Dejana
    Maier, Lars S.
    Velicki, Lazar
    Olivotto, Iacopo
    MacGowan, Guy A.
    Jakovljevic, Djordje G.
    Filipovic, Nenad
    Bosnic, Zoran
    [J]. JMIR MEDICAL INFORMATICS, 2022, 10 (02)
  • [3] Heart failure in hypertrophic cardiomyopathy
    Korovina, EP
    Moiseev, VS
    [J]. KARDIOLOGIYA, 1997, 37 (11) : 31 - 35
  • [4] Fragmented QRS Predicts Heart Failure Progression in Patients With Hypertrophic Cardiomyopathy
    Nomura, Akihiro
    Konno, Tetsuo
    Fujita, Takashi
    Tanaka, Yoshihiro
    Nagata, Yoji
    Tsuda, Toyonobu
    Hodatsu, Akihiko
    Sakata, Kenji
    Nakamura, Hiroyuki
    Kawashiri, Masa-Aki
    Fujino, Noboru
    Yamagishi, Masakazu
    Hayashi, Kenshi
    [J]. CIRCULATION JOURNAL, 2015, 79 (01) : 136 - 143
  • [5] Predictors of adverse outcomes and progression of heart failure in patients with hypertrophic cardiomyopathy
    Kurlianskaya, E. K.
    Komissarova, S. M.
    Zakharava, E. Y.
    Ilyina, T. V.
    Sevruk, T. V.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 : 433 - 433
  • [6] Predicting Preclinical Heart Failure Progression The Rise of Machine-Learning for Population Health
    Strom, Jordan B.
    Sengupta, Partho P.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2022, 15 (02) : 209 - 211
  • [7] A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy
    Smole, Tim
    Zunkovic, Bojan
    Piculin, Matej
    Kokalj, Enja
    Robnik-Sikonja, Marko
    Kukar, Matjaz
    Fotiadis, Dimitrios, I
    Pezoulas, Vasileios C.
    Tachos, Nikolaos S.
    Barlocco, Fausto
    Mazzarotto, Francesco
    Popovic, Dejana
    Maier, Lars
    Velicki, Lazar
    MacGowan, Guy A.
    Olivotto, Iacopo
    Filipovic, Nenad
    Jakovljevic, Djordje G.
    Bosnic, Zoran
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [8] Progression of Myocardial Dysfunction in Hypertrophic Cardiomyopathy Patients: Association With Heart Failure Outcomes
    Hiemstra, Yasmine L.
    Debonnaire, Philippe
    van Wijngaarden, Suzanne E.
    Bootsma, Marianne
    Schalij, Martin J.
    Bax, Jeroen J.
    Delgado, Victoria
    Marsan, Nina A.
    [J]. CIRCULATION, 2016, 134
  • [9] Relation of Doppler Tissue Imaging Parameters With Heart Failure Progression in Hypertrophic Cardiomyopathy
    Kalra, Ankur
    Harris, Kevin M.
    Maron, Bradley A.
    Maron, Martin S.
    Garberich, Ross F.
    Haas, Tammy S.
    Lesser, John R.
    Maron, Barry J.
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2016, 117 (11): : 1808 - 1814
  • [10] Microvascular Dysfunction, Myocardial Ischemia, and Progression to Heart Failure in Patients with Hypertrophic Cardiomyopathy
    Franco Cecchi
    Aurelio Sgalambro
    Massimo Baldi
    Barbara Sotgia
    Davide Antoniucci
    Paolo G. Camici
    Roberto Sciagrà
    Iacopo Olivotto
    [J]. Journal of Cardiovascular Translational Research, 2009, 2 : 452 - 461