Fe (III) reduction strategies of dissimilatory iron reducing bacteria

被引:76
|
作者
Esther, Jacintha [1 ,2 ]
Sukla, Lala Behari [1 ,2 ]
Pradhan, Nilotpala [1 ,2 ]
Panda, Sandeep [1 ]
机构
[1] CSIR Inst Minerals & Mat Technol, Bhubaneswar 751013, Odisha, India
[2] AcSIR, New Delhi, India
关键词
Dissimilatory Iron Reducing Bacteria; Shewanella; Geobacter; Metabolism; Applications; SHEWANELLA-ONEIDENSIS MR-1; EXTRACELLULAR ELECTRON-TRANSFER; OUTER-MEMBRANE CYTOCHROMES; MICROBIAL FUEL-CELLS; C-TYPE CYTOCHROME; CRYSTALLINE IRON(III) OXIDES; INSOLUBLE FE(III) OXIDE; FERMENTANS GEN. NOV; SUBTERRANEUS SP NOV; GEOBACTER-SULFURREDUCENS;
D O I
10.1007/s11814-014-0286-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in applied and industrial microbial biotechnology have opened up many new avenues for application of several microorganisms. A group of certain metal reducers such as the dissimilatory iron reducing microorganisms possess an inherent potential to reduce oxidized metals under strict anaerobic/facultative anaerobic condition, thereby opening possibilities to combat environmental pollution. This unique property has invited researchers towards understanding the metabolic regulatory pathways that enables the microbes to thrive under extreme environmental conditions. Currently, dissimilatory iron reducing bacteria (DIRB) is in the focus of researchers to elucidate the specific mechanisms responsible for microbial metal reduction. The recent advances towards understanding the metabolism of iron reduction in Shewanella and Geobacter, the model DIRB has been covered in this review. It is believed that the metabolic insights into the Fe (III) reduction systems of the model DIRB; Shewanella and Geobacter (as discussed in the review) can be a basis for metabolic engineering to provide improved practical applications. With the advancement of our existing knowledge on the metabolic processes of the model iron reducers, applications ranging from laboratory to field scale practices can be carried out. DIRB has gained immense interest for its application in the field of bioremediation, electrobiosynthesis, and bioelectronics in this decade. It can therefore be anticipated that the forthcoming years will see more applications of microbial iron reducers based on the existing as well as advanced metabolic informations available in open source literature.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Fe (III) reduction strategies of dissimilatory iron reducing bacteria
    Jacintha Esther
    Lala Behari Sukla
    Nilotpala Pradhan
    Sandeep Panda
    Korean Journal of Chemical Engineering, 2015, 32 : 1 - 14
  • [2] The role of dissimilatory Fe(III)-reducing bacteria in transformation of iron minerals
    Zavarzina, DG
    PALEONTOLOGICAL JOURNAL, 2004, 38 (03) : 231 - 237
  • [3] Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals
    Caccavo, F
    Das, A
    GEOMICROBIOLOGY JOURNAL, 2002, 19 (02) : 161 - 177
  • [4] Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria
    Lonergan, DJ
    Jenter, HL
    Coates, JD
    Phillips, EJP
    Schmidt, TM
    Lovley, DR
    JOURNAL OF BACTERIOLOGY, 1996, 178 (08) : 2402 - 2408
  • [5] Strategies for optimizing biovivianite production using dissimilatory Fe (III)-reducing bacteria.
    Eshun, Lordina E.
    Coker, Victoria S.
    Shaw, Samuel
    Lloyd, Jonathan R.
    ENVIRONMENTAL RESEARCH, 2024, 242
  • [6] Iron Speciation in Dissimilatory Fe(III)-reducing Cultures
    Garcia-Balboa, C.
    Vicente, M. S.
    Blazquez, M. L.
    Gonzalez, F.
    Munoz, J. A.
    Ballester, A.
    GEOMICROBIOLOGY JOURNAL, 2011, 28 (04) : 371 - 379
  • [7] REMOVAL OF Fe FROM KAOLIN USING DISSIMILATORY Fe(III)-REDUCING BACTERIA
    Guo, Min-Rong
    He, Qiu-Xiang
    Li, Yu-Man
    Lu, Xiao-Qiao
    Chen, Zu-Liang
    CLAYS AND CLAY MINERALS, 2010, 58 (04) : 515 - 521
  • [8] Removal of Fe from Kaolin using Dissimilatory Fe(III)-Reducing Bacteria
    Min-Rong Guo
    Qiu-Xiang He
    Yu-Man Li
    Xiao-qiao Lu
    Zu-liang Chen
    Clays and Clay Minerals, 2010, 58 : 515 - 521
  • [9] Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria
    Si, Youbin
    Zou, Yan
    Liu, Xiaohong
    Si, Xiongyuan
    Mao, Jingdong
    CHEMOSPHERE, 2015, 122 : 206 - 212
  • [10] Reductive precipitation of gold by dissimilatory Fe(III)-Reducing Bacteria and Archaea
    Kashefi, K
    Tor, JM
    Nevin, KP
    Lovley, DR
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) : 3275 - 3279