A new upper bound on the minimum distance of turbo codes

被引:17
|
作者
Perotti, A [1 ]
Benedetto, S [1 ]
机构
[1] Politecn Torino, CERCOM, I-10129 Turin, Italy
关键词
minimum distance; performance bounds; permutations; turbo codes;
D O I
10.1109/TIT.2004.838358
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new upper bound on the minimum distance of turbo codes is derived. The new bound is obtained by construction of an undirected graph which reflects the characteristics of the constituent codes and the interleaver. The resulting expression shows that the minimum distance of a turbo code grows approximately with the base-3 logarithm of the information word length. The new bound is easy to compute, applies to rate k(o)/n(o) constituent encoders, and often improves over existing results.
引用
收藏
页码:2985 / 2997
页数:13
相关论文
共 50 条
  • [1] New upper bound on the minimum distance of turbo codes
    Perotti, A
    Benedetto, S
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 313 - 313
  • [2] Upper bound on the minimum distance of turbo codes
    Breiling, M
    Huber, JB
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (05) : 808 - 815
  • [3] A logarithmic upper bound on the minimum distance of turbo codes
    Breiling, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1692 - 1710
  • [4] New upper bound for binary codes with minimum distance four
    Kim, JK
    Hahn, SG
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 291 - 295
  • [5] On the minimum distance of turbo codes
    Truhachev, D
    Lentmaier, M
    Wintzell, O
    Zigangirov, KS
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 84 - 84
  • [6] Upper bounds on the minimum distance for turbo codes using CPP interleavers
    Lucian Trifina
    Daniela Tarniceriu
    Jonghoon Ryu
    Ana-Mirela Rotopanescu
    Telecommunication Systems, 2021, 76 : 423 - 447
  • [7] Upper bounds on the minimum distance for turbo codes using CPP interleavers
    Trifina, Lucian
    Tarniceriu, Daniela
    Ryu, Jonghoon
    Rotopanescu, Ana-Mirela
    TELECOMMUNICATION SYSTEMS, 2021, 76 (03) : 423 - 447
  • [8] An upper bound on the minimum distance of serially concatenated convolutional codes
    Perotti, Alberto
    Benedetto, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5501 - 5509
  • [9] An upper bound on the minimum distance of serially concatenated convolutional codes
    Perotti, A
    Benedetto, S
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 314 - 314
  • [10] A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes
    Alexander Zeh
    Sergey Bezzateev
    Designs, Codes and Cryptography, 2014, 71 : 229 - 246