Virtual reality for stroke rehabilitation

被引:157
|
作者
Laver, Kate E. [1 ]
George, Stacey [1 ]
Thomas, Susie [2 ]
Deutsch, Judith E. [3 ]
Crotty, Maria [1 ]
机构
[1] Flinders Univ S Australia, Dept Rehabil & Aged Care, Adelaide, SA 5041, Australia
[2] Univ South Australia City East, iCAHE, Adelaide, SA, Australia
[3] Rutgers State Univ, Dept Rehabil & Movement Sci, Newark, NJ 07102 USA
关键词
Video Games; Activities of Daily Living; Psychomotor Performance; Randomized Controlled Trials as Topic; Stroke [psychology; rehabilitation; Therapy; Computer-Assisted; methods; User-Computer Interface; Humans; SUBACUTE STROKE; MOTOR RECOVERY; DOUBLE-BLIND; UPPER-LIMB; BALANCE; INDIVIDUALS; WII; ENVIRONMENT; PERFORMANCE; TECHNOLOGY;
D O I
10.1002/14651858.CD008349.pub3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. Objectives Primary objective: To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. Secondary objective: To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. Search methods We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Selection criteria Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Data collection and analysis Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. Main results We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions varied. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains 'low' or ' very low' quality when rated using the GRADE system. Control groups received no intervention or therapy based on a standard care approach. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. Primary outcome: results were statistically significant for upper limb function (standardised mean difference (SMD) 0.28, 95% confidence intervals (CI) 0.08 to 0.49 based on 12 studies with 397 participants). Secondary outcomes: there were no statistically significant effects for grip strength, gait speed or global motor function. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.43, 95% CI 0.18 to 0.69 based on eight studies with 253 participants); however, we were unable to pool results for cognitive function, participation restriction, quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 26% of participants screened were recruited. Authors' conclusions We found evidence that the use of virtual reality and interactive video gaming may be beneficial in improving upper limb function and ADL function when used as an adjunct to usual care (to increase overall therapy time) or when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength, gait speed or global motor function. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term.
引用
收藏
页数:110
相关论文
共 50 条
  • [1] Virtual reality for stroke rehabilitation
    Laver, Kate E.
    Lange, Belinda
    George, Stacey
    Deutsch, Judith E.
    Saposnik, Gustavo
    Crotty, Maria
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2017, (11):
  • [2] Virtual Reality for Stroke Rehabilitation
    Laver, Kate E.
    Lange, Belinda
    George, Stacey
    Deutsch, Judith E.
    Saposnik, Gustavo
    Crotty, Maria
    [J]. STROKE, 2018, 49 (04) : E160 - E161
  • [3] Virtual reality for stroke rehabilitation
    Laver, Kate E.
    George, Stacey
    Thomas, Susie
    Deutsch, Judith E.
    Crotty, Maria
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2011, (09):
  • [4] Virtual Reality for Stroke Rehabilitation
    Yamato, Tie P.
    Pompeu, Jose E.
    Pompeu, Sandra M. A. A.
    Hassett, Leanne
    [J]. PHYSICAL THERAPY, 2016, 96 (10): : 1508 - 1513
  • [5] Virtual Reality Design for Stroke Rehabilitation
    Charles, Darryl
    Holmes, Dominic
    Charles, Therese
    McDonough, Suzanne
    [J]. BIOMEDICAL VISUALISATION, VOL 6, 2020, 1235 : 53 - 87
  • [6] Virtual reality based stroke rehabilitation
    Kim, Deog Young
    Park, Jong Bum
    [J]. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION, 2013, 56 (01): : 16 - 22
  • [7] Virtual reality training for stroke rehabilitation
    Lam, Yat San
    Man, David W. K.
    Tam, Sing Fai
    Weiss, Patrice L.
    [J]. NEUROREHABILITATION, 2006, 21 (03) : 245 - 253
  • [8] Virtual reality-enhanced stroke rehabilitation
    Jack, D
    Boian, R
    Merians, AS
    Tremaine, M
    Burdea, GC
    Adamovich, SV
    Recce, M
    Poizner, H
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2001, 9 (03) : 308 - 318
  • [9] A Virtual Reality application for stroke patient rehabilitation
    White, D.
    Burdick, K.
    Fulk, G.
    Searleman, J.
    Carroll, J.
    [J]. 2005 IEEE International Conference on Mechatronics and Automations, Vols 1-4, Conference Proceedings, 2005, : 1081 - 1086
  • [10] Cochrane review: virtual reality for stroke rehabilitation
    Laver, K.
    George, S.
    Thomas, S.
    Deutsch, J. E.
    Crotty, M.
    [J]. EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE, 2012, 48 (03) : 523 - 530