Minimum density power divergence estimator for covariance matrix based on skew t distribution

被引:0
|
作者
Kim, Byungsoo [1 ]
Lee, Sangyeol [2 ]
机构
[1] Yeungnam Univ, Dept Stat, Kyungsan 712749, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
来源
STATISTICAL METHODS AND APPLICATIONS | 2014年 / 23卷 / 04期
基金
新加坡国家研究基金会;
关键词
Minimum density power divergence; Robust estimation; Covariance matrix; Skew t distribution; ROBUST ESTIMATION; MULTIVARIATE; LOCATION;
D O I
10.1007/s10260-014-0284-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the problem of estimating the covariance matrix of stationary multivariate time series based on the minimum density power divergence method that uses a multivariate skew t distribution family. It is shown that under regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. A simulation study is provided for illustration.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 50 条