Syntactic categories for Nori motives

被引:5
|
作者
Barbieri-Viale, Luca [1 ]
Caramello, Olivia [2 ]
Lafforgue, Laurent [3 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[2] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[3] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 04期
关键词
18C10; 03G30; 19E15; 14F42;
D O I
10.1007/s00029-018-0425-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new construction, based on categorical logic, of Nori's Q-linear abelian category of mixed motives associated to a cohomology or homology functor with values in finite-dimensional vector spaces over Q. This new construction makes sense for infinite-dimensional vector spaces as well, so that it associates a Q-linear abelian category of mixed motives to any (co)homology functor, not only Betti homology (as Nori had done) but also, for instance, l-adic, p-adic or motivic cohomology. We prove that the Q-linear abelian categories of mixed motives associated to different (co)homology functors are equivalent if and only a family (of logical nature) of explicit properties is shared by these different functors. The problem of the existence of a universal cohomology theory and of the equivalence of the information encoded by the different classical cohomology functors thus reduces to that of checking these explicit conditions.
引用
收藏
页码:3619 / 3648
页数:30
相关论文
共 50 条
  • [1] Syntactic categories for Nori motives
    Luca Barbieri-Viale
    Olivia Caramello
    Laurent Lafforgue
    Selecta Mathematica, 2018, 24 : 3619 - 3648
  • [2] Modular Nori Motives
    N. C. Combe
    Yu. I Manin
    M. Marcolli
    p-Adic Numbers, Ultrametric Analysis and Applications, 2023, 15 : 187 - 194
  • [3] Modular Nori Motives
    Combe, N. C.
    Manin, Yu., I
    Marcolli, M.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2023, 15 (03) : 187 - 194
  • [4] Perverse Nori motives
    Ivorra, Florian
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (04) : 1097 - 1131
  • [5] TENSOR STRUCTURE FOR NORI MOTIVES
    Barbieri-Viale, Luca
    Huber, Annette
    Prest, Mike
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (01) : 1 - 30
  • [6] Nori 1-motives
    Ayoub, Joseph
    Barbieri-Viale, Luca
    MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 367 - 402
  • [7] Nori Motives of Curves With Modulus and Laumon 1-motives
    Ivorra, Florian
    Yamazaki, Takao
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (04): : 868 - 897
  • [9] Syntactic categories
    Botica, Tomislava Bosnjak
    RASPRAVE, 2008, 34 (01): : 510 - 513
  • [10] The syntactic categories
    Bochenski, Innocenty Maria
    FILOZOFIA NAUKI, 2012, 20 (03): : 141 - 159