Ag@ZIF-8/g-C3N4 Z-scheme photocatalyst for the enhanced removal of multiple classes of antibiotics by integrated adsorption and photocatalytic degradation under visible light irradiation

被引:17
|
作者
Guo, Xin [1 ]
He, Siyuan [1 ]
Meng, Zhe [1 ]
Wang, Yinghui [1 ]
Peng, Yuan [1 ]
机构
[1] Ningxia Univ, State Key Lab High Efficiency Utilizat Coal & Gre, Natl Demonstrat Ctr Expt Chem Educ, Coll Chem & Chem Engn, Yinchuan 750021, Ningxia, Peoples R China
关键词
HETEROJUNCTION; SEPARATION;
D O I
10.1039/d2ra02194c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By combining the plasmon resonance of Ag nanoparticles and orientation effects of ZIF-8, as well as the visible-light activity of g-C3N4, we constructed a direct Z-scheme heterojunction with a co-existing Ag+/Ag-0 system by an in situ coprecipitation method. The presence of Ag+/Ag-0 on the surface of ZIF-8 was confirmed by the exchange of Ag+ and Zn2+ ions. This promoted the reduction of the band gap of ZIF-8, according to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The results reveal that the 12 wt% Ag@ZIF-8/g-C3N4 nanocomposite presented the best adsorptive-photocatalytic activity for the degradation of multi-residue antibiotics under visible light irradiation for 60 min. Its degradation efficiency reached 90%, and its average apparent reaction rate constant was 10.27 times that of pure g-C3N4. In the radical scavenger experiments, O-2(-) and OH were shown to be important in the process of photocatalytic degradation. In addition, we proposed a possible direct Z-scheme photocatalytic mechanism, that is, an internal electric field was formed to compensate the mediators between the interfaces of Ag@ZIF-8 and g-C3N4. This improvement can be attributed to the direct Z-scheme heterojunction system fabricated between Ag@ZIF-8 and g-C3N4. This can accelerate photogenerated electron-hole separation and the redox capability of Ag@ZIF-8/g-C3N4. The integration of the adsorption and photocatalytic degradation of various antibiotics is a promising approach. ZIF-8 has been widely used in the integrated adsorptive-photocatalytic removal of various antibiotics due to its large surface area, high orientation adsorption capacity. Therefore, this study provides new insights into the design of enhanced redox capacity for the efficient degradation of multiple antibiotics under visible-light irradiation.
引用
收藏
页码:17919 / 17931
页数:13
相关论文
共 50 条
  • [1] Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light
    Zhao, Xin
    Zhang, Xiaojing
    Han, Dongxue
    Niu, Li
    Applied Surface Science, 2022, 501
  • [2] Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light
    Zhao, Xin
    Zhang, Xiaojing
    Han, Dongxue
    Niu, Li
    APPLIED SURFACE SCIENCE, 2020, 501
  • [3] Enhanced photocatalytic degradation activity of Z-scheme heterojunction BiVO4/Cu/g-C3N4 under visible light irradiation
    Li, Jing
    Ma, Yuxuan
    Xu, Yuan
    Li, Pengtao
    Guo, Jifeng
    WATER ENVIRONMENT RESEARCH, 2021, 93 (10) : 2010 - 2024
  • [4] A Z-scheme BiYO3/g-C3N4 heterojunction photocatalyst for the degradation of organic pollutants under visible light irradiation
    Parthasarathy Sasikala
    Thirugnanam Bavani
    Manickam Selvaraj
    Mani Preeyanghaa
    Bernaurdshaw Neppolian
    Sepperumal Murugesan
    Jagannathan Madhavan
    Environmental Science and Pollution Research, 2023, 30 : 41095 - 41106
  • [5] A Z-scheme BiYO3/g-C3N4 heterojunction photocatalyst for the degradation of organic pollutants under visible light irradiation
    Sasikala, Parthasarathy
    Bavani, Thirugnanam
    Selvaraj, Manickam
    Preeyanghaa, Mani
    Neppolian, Bernaurdshaw
    Murugesan, Sepperumal
    Madhavan, Jagannathan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (14) : 41095 - 41106
  • [6] Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction
    Yu, Hongbin
    Wang, Danyang
    Zhao, Bin
    Lu, Ying
    Wang, Xinhong
    Zhu, Suiyi
    Qin, Weichao
    Huo, Mingxin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [7] Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity
    Yang, Yuxin
    Guo, Wan
    Guo, Yingna
    Zhao, Yahui
    Yuan, Xing
    Guo, Yihang
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 271 : 150 - 159
  • [8] Enhanced photocatalytic performance and stability of visible-light-driven Z-scheme CdS/Ag/g-C3N4 nanosheets photocatalyst
    Qin, Yingying
    Li, Hong
    Dong, Hongjun
    Ma, Changchang
    Li, Xiuying
    Liu, Xinlin
    Liu, Yang
    Li, Chunxiang
    Yan, Yongsheng
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (15) : 12437 - 12448
  • [9] Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation
    Zhao, Shuo
    Zhang, Yiwei
    Zhou, Yuming
    Fang, Jiasheng
    Wang, Yanyun
    Zhang, Chao
    Chen, Wenxia
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 6008 - 6020
  • [10] Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation
    Shuo Zhao
    Yiwei Zhang
    Yuming Zhou
    Jiasheng Fang
    Yanyun Wang
    Chao Zhang
    Wenxia Chen
    Journal of Materials Science, 2018, 53 : 6008 - 6020