Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment

被引:22
|
作者
Chowdhury, Tashnim [1 ]
Rahnemoonfar, Maryam [1 ]
Murphy, Robin [2 ]
Fernandes, Odair [2 ]
机构
[1] Univ Maryland Baltimore Cty, Comp Vis & Remote Sensing Lab, Baltimore, MD 21228 USA
[2] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX USA
关键词
Natural disaster; semantic segmentation; aerial;
D O I
10.1109/BigData50022.2020.9377916
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.
引用
收藏
页码:3904 / 3913
页数:10
相关论文
共 50 条
  • [1] RescueNet: A High Resolution UAV Semantic Segmentation Dataset for Natural Disaster Damage Assessment
    Maryam Rahnemoonfar
    Tashnim Chowdhury
    Robin Murphy
    [J]. Scientific Data, 10
  • [2] RescueNet: A High Resolution UAV Semantic Segmentation Dataset for Natural Disaster Damage Assessment
    Rahnemoonfar, Maryam
    Chowdhury, Tashnim
    Murphy, Robin
    [J]. SCIENTIFIC DATA, 2023, 10 (01)
  • [3] Detection and Semantic Segmentation of Disaster Damage in UAV Footage
    Pi, Yalong
    Nath, Nipun D.
    Behzadan, Amir H.
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2021, 35 (02)
  • [4] Memory-Constrained Semantic Segmentation for Ultra-High Resolution UAV Imagery
    Li, Qi
    Cai, Jiaxin
    Luo, Jiexin
    Yu, Yuanlong
    Gu, Jason
    Pan, Jia
    Liu, Wenxi
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1708 - 1715
  • [5] UAVid: A semantic segmentation dataset for UAV imagery
    Lyu, Ye
    Vosselman, George
    Xia, Gui-Song
    Yilmaz, Alper
    Yang, Michael Ying
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 165 (165) : 108 - 119
  • [6] Dense Pyramid Network for Semantic Segmentation of High Resolution Aerial Imagery
    Pan, Xuran
    Gao, Lianru
    Zhang, Bing
    Yang, Fan
    Liao, Wenzhi
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 362 - 369
  • [7] A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
    Huang, Huasheng
    Lan, Yubin
    Deng, Jizhong
    Yang, Aqing
    Deng, Xiaoling
    Zhang, Lei
    Wen, Sheng
    [J]. SENSORS, 2018, 18 (07)
  • [8] Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery
    Lobo Torres, Daliana
    Queiroz Feitosa, Raul
    Nigri Happ, Patrick
    Elena Cue La Rosa, Laura
    Marcato Junior, Jose
    Martins, Jose
    Ola Bressan, Patrik
    Goncalves, Wesley Nunes
    Liesenberg, Veraldo
    [J]. SENSORS, 2020, 20 (02)
  • [9] Object oriented assessment of damage due to natural disaster using very high resolution images
    Chesnel, Anne-Lise
    Binet, Renaud
    Wald, Lucien
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3736 - +
  • [10] Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery
    Liu, Yu
    Duc Minh Nguyen
    Deligiannis, Nikos
    Ding, Wenrui
    Munteanu, Adrian
    [J]. REMOTE SENSING, 2017, 9 (06)