Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers

被引:44
|
作者
Endo, Akira [1 ]
van Leeuwen, Edwin [2 ]
Baguelin, Marc [1 ,2 ,3 ]
机构
[1] London Sch Hyg & Trop Med, London, England
[2] Publ Hlth England, London, England
[3] Imperial Coll, London, England
关键词
Particle Markov-chain Monte Carlo; State-space models; Hidden Markov process; Particle filter; Sequential Monte Carlo; BAYESIAN-INFERENCE;
D O I
10.1016/j.epidem.2019.100363
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The particle Markov-chain Monte Carlo (PMCMC) method is a powerful tool to efficiently explore high-dimensional parameter space using time-series data. We illustrate an overall picture of PMCMC with minimal but sufficient theoretical background to support the readers in the field of biomedical/health science to apply PMCMC to their studies. Some working examples of PMCMC applied to infectious disease dynamic models are presented with R code.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] THE BOOTSTRAP AND MARKOV-CHAIN MONTE CARLO
    Efron, Bradley
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1052 - 1062
  • [2] Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo
    Jun, Hyunggu
    Cho, Yongchae
    [J]. GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2022, 25 (04): : 252 - 265
  • [3] Indirect gradient analysis by Markov-chain Monte Carlo
    Walker, Steven C.
    [J]. PLANT ECOLOGY, 2015, 216 (05) : 697 - 708
  • [4] Indirect gradient analysis by Markov-chain Monte Carlo
    Steven C. Walker
    [J]. Plant Ecology, 2015, 216 : 697 - 708
  • [5] Asteroid orbital ranging using Markov-Chain Monte Carlo
    Oszkiewicz, Dagmara
    Muinonen, Karri
    Virtanen, Jenni
    Granvik, Mikael
    [J]. METEORITICS & PLANETARY SCIENCE, 2009, 44 (12) : 1897 - 1904
  • [6] Asteroid mass estimation using Markov-chain Monte Carlo
    Siltala, Lauri
    Granvik, Mikael
    [J]. ICARUS, 2017, 297 : 149 - 159
  • [7] Interacting Particle Markov Chain Monte Carlo
    Rainforth, Tom
    Naesseth, Christian A.
    Lindsten, Fredrik
    Paige, Brooks
    van de Meent, Jan-Willem
    Doucet, Arnaud
    Wood, Frank
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [8] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [9] An introduction to Markov chain Monte Carlo methods
    Besag, J
    [J]. MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [10] Markov Chain Monte Carlo: an introduction for epidemiologists
    Hamra, Ghassan
    MacLehose, Richard
    Richardson, David
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (02) : 627 - 634