Inter-comparison of soil moisture products from SMOS, AMSR-E, ECMWF and GLDAS over the Mongolia Plateau

被引:10
|
作者
Wen, Xin [1 ]
Lu, Hui [1 ,2 ]
Li, Chengwei [1 ]
Koike, Toshio [3 ]
Kaihotsu, Ichirou [4 ]
机构
[1] Tsinghua Univ, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China
[2] Joint Ctr Global Change Studies, Beijing 100875, Peoples R China
[3] Univ Tokyo, Dept Civil Engn, Tokyo, Japan
[4] Hiroshima Univ, Dept Nat & Environm Sci, Hiroshima, Japan
来源
基金
中国国家自然科学基金;
关键词
Soil Moisture; AMSR-E; SMOS; ECMWF; GLDAS; Mongolia; RETRIEVAL;
D O I
10.1117/12.2068952
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study, we inter-compare soil moisture from in situ measurement, reanalysis data (ERA-interim), land data assimilation system simulations (the Global Land Data Assimilation System, GLDAS) and two satellite remote sensing retrievals: L-band products from Soil Moisture Ocean Salinity (SMOS) and C-band products from the Japan Aerospace Exploration Agency Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). The station-averaged surface soil moisture data, measured during May to September 2010, from the CEOP Mongolia network are used as "ground truth". Major findings are: (1) from the point view of root mean square error (RMSE), the accuracy of the remote sensing products is clearly higher than the ERA-interim and GLDAS. AMSR-E has the smallest RMSE (0.032), while the highly-expected SMOS has an RMSE of 0.065, larger than the mission requirement (RMSE<0.04). Both GLDAS (RMSE=0.132) and ERA-interim (RMSE=0.115) evidently overestimate soil moisture. (2) According to the correlation coefficient (R), ERA-interim has the highest one (0.77), and next came AMSR-E (0.47), GLDAS (0.06) and SMOS (0.04), indicating that both GLDAS and SMOS fails to capture the soil moisture temporal dynamics. Our results reveal that the remote sensing product still need further develop, for both C-Band algorithm (AMSR-E) and L-band one (SMOS). The coincident of high R of ERA-interim and low RMSE of AMSR-E implies a potential for integration within a land data assimilation system.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] AN INTERCOMPARISON OF THE SPATIAL-TEMPORAL CHARACTERISTICS OF SMOS AND AMSR-E SOIL MOISTURE PRODUCTS OVER MONGOLIA PLATEAU
    Wen, Xin
    Lu, Hui
    Li, Chengwei
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 681 - 684
  • [2] Inter-comparison of SMOS and AMSR-E soil moisture products during flood years (2010-2011) over Pakistan
    Anam, Roha
    Chishtie, Farrukh
    Ghuffar, Sajid
    Qazi, Waqas
    Shahid, Imran
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01): : 442 - 451
  • [3] A MULTI-SENSOR (SMOS, AMSR-E AND ASCAT) SATELLITE-BASED SOIL MOISTURE PRODUCTS INTER-COMPARISON
    Lacava, T.
    Brocca, L.
    Faruolo, M.
    Matgen, P.
    Moramarco, T.
    Pergola, N.
    Tramutoli, V
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1135 - 1138
  • [4] COMPARING SOIL MOISTURE RETRIEVALS FROM SMOS, ASCAT AND AMSR-E OVER THE PAMPAS PLAINS
    Smucler, E.
    Carballo, F.
    Grings, F.
    Bruscantini, C.
    Salvia, M.
    Crow, W.
    Karszenbaum, H.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [5] Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau
    Chen, Yingying
    Yang, Kun
    Qin, Jun
    Zhao, Long
    Tang, Wenjun
    Han, Menglei
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (10) : 4466 - 4475
  • [6] Soil moisture retrieval from AMSR-E
    Njoku, EG
    Jackson, TJ
    Lakshmi, V
    Chan, TK
    Nghiem, SV
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02): : 215 - 229
  • [7] The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E
    van der Schalie, R.
    de Jeu, R. A. M.
    Kerr, Y. H.
    Wigneron, J. P.
    Rodriguez-Fernandez, N. J.
    Al-Yaari, A.
    Parinussa, R. M.
    Mecklenburg, S.
    Drusch, M.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 189 : 180 - 193
  • [8] Remotely Sensed Soil Moisture over Australia from AMSR-E
    Draper, C. S.
    Walker, J. P.
    Steinle, P. J.
    de Jeu, R. A. M.
    Holmes, T. R. H.
    [J]. MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 1756 - 1762
  • [9] A comparison of in situ precipitation with soil moisture retrieved from AMSR-E
    Mikai, H
    Arai, Y
    Mutoh, T
    Imaoka, K
    Shibata, A
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3460 - 3461
  • [10] Comparison between SPI and soil moisture retrieved from AMSR-E
    Xu, Jingwen
    Zhao, Junfang
    Wang, Yupeng
    Chen, Qionglian
    Zeng, Liwei
    [J]. ADVANCED MATERIALS AND PROCESSES III, PTS 1 AND 2, 2013, 395-396 : 511 - +