Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method

被引:68
|
作者
Yusufoglu, E. [1 ]
Bekir, A. [1 ]
机构
[1] Dumlupinar Univ, Art Sci Fac, Dept Math, Kutahya, Turkey
关键词
solitons; sine-cosine method; Konopelchenko-Dubrovsky equations; Klein-Gordon equations; Nizhnik-Novikov-Veselov equations;
D O I
10.1080/00207160601138756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish exact solutions for coupled nonlinear evolution equations. The sine-cosine method is used to construct exact periodic and soliton solutions of coupled nonlinear evolution equations. Many new families of exact travelling wave solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equations and the coupled nonlinear Klein-Gordon and Nizhnik-Novikov-Veselov equations are successfully obtained. The obtained solutions include compactons, solitons, solitary patterns and periodic solutions. These solutions may be important and of significance for the explanation of some practical physical problems.
引用
收藏
页码:915 / 924
页数:10
相关论文
共 50 条
  • [1] Solitons and Periodic Solutions to Nonlinear Partial Differential Equations by the Sine-Cosine Method
    Alquran, Marwan T.
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 85 - 88
  • [2] Explicit series solutions to nonlinear evolution equations: The sine-cosine method
    Betchewe, Gambo
    Thomas, Bouetou Bouetou
    Victor, Kuetche Kamgang
    Crepin, Kofane Timoleon
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4239 - 4247
  • [3] New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method
    Bekir, Ahmet
    [J]. PHYSICA SCRIPTA, 2008, 77 (04)
  • [4] Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method
    Tascan, Filiz
    Bekir, Ahmet
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 3134 - 3139
  • [5] Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method
    Yusufoglu, E.
    Bekir, A.
    Alp, M.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1193 - 1197
  • [6] A sine-cosine method for handling nonlinear wave equations
    Wazwaz, AM
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (5-6) : 499 - 508
  • [7] The tanh-coth and the sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer-Chree equations
    Wazwaz, Abdul-Majid
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) : 24 - 33
  • [8] On Periodic Wave Solutions to (1+1)-Dimensional Nonlinear Physical Models Using the Sine-Cosine Method
    Thomas, Bouetou B.
    Betchewe, Gambo
    Victor, Kuetche K.
    Crepin, Kofane T.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) : 945 - 953
  • [9] On Periodic Wave Solutions to (1+1)-Dimensional Nonlinear Physical Models Using the Sine-Cosine Method
    Bouetou B. Thomas
    Gambo Betchewe
    Kuetche K. Victor
    Kofane T. Crepin
    [J]. Acta Applicandae Mathematicae, 2010, 110 : 945 - 953
  • [10] Exotical solitons for an intrinsic fractional circuit using the sine-cosine method
    Fendzi-Donfack, Emmanuel
    Temgoua, Gildas William Kamkou
    Djoufack, Zacharie Isidore
    Kenfack-Jiotsa, Aurelien
    Nguenang, Jean Pierre
    Nana, Laurent
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 160