Formation of porous anodic titanium oxide films in hot phosphate/glycerol electrolyte

被引:31
|
作者
Habazaki, H. [1 ]
Teraoka, M. [1 ]
Aoki, Y. [1 ]
Skeldon, P. [2 ]
Thompson, G. E. [2 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan
[2] Univ Manchester, Ctr Corros & Protect, Sch Mat, Manchester M60 1QD, Lancs, England
基金
英国工程与自然科学研究理事会; 日本学术振兴会;
关键词
Anodizing; Organic electrolyte; Titanium oxide; Porous anodic oxide; Crystallization; TIO2; NANOTUBE-ARRAYS; PHOTOELECTROCHEMICAL PROPERTIES; CRYSTALLIZATION; GROWTH;
D O I
10.1016/j.electacta.2010.02.036
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The present study reveals the formation of porous anodic films on titanium at an increased growth rate in hot phosphate/glycerol electrolyte by reducing the water content. A porous titanium oxide film of 12 mu m thickness, with a relatively low content of phosphorus species, is developed after anodizing at 5 V for 3.6 ks in 0.6 mol dm(-3) K2HPO4 +0.2 mol dm(-3) K3PO4/glycerol electrolyte containing only 0.04% water at 433K. The growth efficiency is reduced by increasing the formation voltage to 20V, due to formation of crystalline oxide, which induces gas generation during anodizing. The film formed at 20V consists of two layers, with an increased concentration of phosphorus species in the inner layer. The outer layer, comprising approximately 25% of the film thickness, is developed at low formation voltages, of less than 10 V, during the initial anodizing at a constant current density of 250 A m(-2). The pore diameter is not significantly dependent upon the formation voltage, being similar to 10 nm. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3939 / 3943
页数:5
相关论文
共 50 条
  • [1] Importance of water content in formation of porous anodic niobium oxide films in hot phosphate-glycerol electrolyte
    Habazaki, H.
    Oikawa, Y.
    Fushimi, K.
    Aoki, Y.
    Shimizu, K.
    Skeldon, R.
    Thompson, G. E.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (03) : 946 - 951
  • [2] Formation behavior of nanoporous anodic aluminum oxide films in hot glycerol/phosphate electrolyte
    Truong Nhat Nguyen
    Kim, Doohun
    Jeong, Dae-Yeong
    Kim, Min-Woo
    Kim, Jong Uk
    [J]. ELECTROCHIMICA ACTA, 2012, 83 : 288 - 293
  • [3] Growth of porous anodic alumina films in hot phosphate–glycerol electrolyte
    S. Yang
    Y. Aoki
    P. Skeldon
    G. E. Thompson
    H. Habazaki
    [J]. Journal of Solid State Electrochemistry, 2011, 15 : 689 - 696
  • [4] Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte
    Yang, S.
    Aoki, Y.
    Skeldon, P.
    Thompson, G. E.
    Habazaki, H.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (04) : 689 - 696
  • [5] Formation of porous anodic films on Ti-Si alloys in hot phosphate-glycerol electrolyte
    Habazaki, H.
    Oikawa, Y.
    Fushimi, K.
    Shimizu, K.
    Nagata, S.
    Skeldon, P.
    Thompson, G. E.
    [J]. ELECTROCHIMICA ACTA, 2007, 53 (04) : 1775 - 1781
  • [6] Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte
    Yang, S.
    Aoki, Y.
    Habazaki, H.
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (19) : 8190 - 8195
  • [7] Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte
    Z. Liu
    G. E. Thompson
    [J]. Journal of Materials Engineering and Performance, 2015, 24 : 59 - 66
  • [8] Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte
    Liu, Z.
    Thompson, G. E.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (01) : 59 - 66
  • [9] Formation of Porous Oxide Layer on Stainless Steel by Anodization in Hot Glycerol Electrolyte
    Lee, Jaewon
    Choi, Hyun-Kuk
    Kim, Moon Gab
    Lee, Yong Sei
    Lee, Kiyoung
    [J]. APPLIED CHEMISTRY FOR ENGINEERING, 2020, 31 (02): : 215 - 219
  • [10] Understanding the Formation of Anodic Nanoporous TiO2 Structures in a Hot Glycerol/Phosphate Electrolyte
    Lee, Kiyoung
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : E5 - E10