Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed. (C) 2021 Elsevier B.V. All rights reserved.