Approximate Bayesian computation with composite score functions

被引:11
|
作者
Ruli, Erlis [1 ]
Sartori, Nicola [1 ]
Ventura, Laura [1 ]
机构
[1] Univ Padua, Dept Stat Sci, Padua, Italy
关键词
Complex model; Composite marginal likelihood; Likelihood-free inference; Pairwise likelihood; Tangent exponential model; Unbiased estimating function; MAX-STABLE PROCESSES; SPATIAL EXTREMES; INDIRECT INFERENCE; MONTE-CARLO; LIKELIHOOD; STATISTICS; EVOLUTION; GENETICS; MODELS;
D O I
10.1007/s11222-015-9551-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Both approximate Bayesian computation (ABC) and composite likelihood methods are useful for Bayesian and frequentist inference, respectively, when the likelihood function is intractable. We propose to use composite likelihood score functions as summary statistics in ABC in order to obtain accurate approximations to the posterior distribution. This is motivated by the use of the score function of the full likelihood, and extended to general unbiased estimating functions in complex models. Moreover, we show that if the composite score is suitably standardised, the resulting ABC procedure is invariant to reparameterisations and automatically adjusts the curvature of the composite likelihood, and of the corresponding posterior distribution. The method is illustrated through examples with simulated data, and an application to modelling of spatial extreme rainfall data is discussed.
引用
收藏
页码:679 / 692
页数:14
相关论文
共 50 条
  • [1] Approximate Bayesian computation with composite score functions
    Erlis Ruli
    Nicola Sartori
    Laura Ventura
    [J]. Statistics and Computing, 2016, 26 : 679 - 692
  • [2] Learning Functions and Approximate Bayesian Computation Design: ABCD
    Hainy, Markus
    Mueller, Werner G.
    Wynn, Henry P.
    [J]. ENTROPY, 2014, 16 (08) : 4353 - 4374
  • [3] Approximate Bayesian Computation
    Beaumont, Mark A.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 379 - 403
  • [4] Approximate Bayesian Computation
    Sunnaker, Mikael
    Busetto, Alberto Giovanni
    Numminen, Elina
    Corander, Jukka
    Foll, Matthieu
    Dessimoz, Christophe
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)
  • [5] Approximate Bayesian computation methods
    Gilles Celeux
    [J]. Statistics and Computing, 2012, 22 : 1165 - 1166
  • [6] Hierarchical Approximate Bayesian Computation
    Brandon M. Turner
    Trisha Van Zandt
    [J]. Psychometrika, 2014, 79 : 185 - 209
  • [7] Approximate Methods for Bayesian Computation
    Craiu, Radu, V
    Levi, Evgeny
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 379 - 399
  • [8] Approximate Bayesian computation methods
    Celeux, Gilles
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1165 - 1166
  • [9] Correcting Approximate Bayesian Computation
    Templeton, Alan R.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2010, 25 (09) : 488 - 489
  • [10] Multifidelity Approximate Bayesian Computation
    Prescott, Thomas P.
    Baker, Ruth E.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 114 - 138