Optimal Spectral Shrinkage and PCA With Heteroscedastic Noise

被引:11
|
作者
Leeb, William [1 ]
Romanov, Elad [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-9190401 Jerusalem, Israel
关键词
Eigenvalues and eigenfunctions; Estimation; Covariance matrices; Predictive models; Sociology; Standards; Principal component analysis; Singular value shrinkage; eigenvalue shrinkage; heteroscedastic noise; matrix denoising; covariance estimation; principal component analysis; EMPIRICAL DISTRIBUTION; SINGULAR-VALUES; EIGENVALUES; MATRIX; CONVERGENCE; NUMBER; LIMIT;
D O I
10.1109/TIT.2021.3055075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the related problems of prediction, covariance estimation, and principal component analysis for the spiked covariance model with heteroscedastic noise. We consider an estimator of the principal components based on whitening the noise, and we derive optimal singular value and eigenvalue shrinkers for use with these estimated principal components. Underlying these methods are new asymptotic results for the high-dimensional spiked model with heteroscedastic noise, and consistent estimators for the relevant population parameters. We extend previous analysis on out-of-sample prediction to the setting of predictors with whitening. We demonstrate certain advantages of noise whitening. Specifically, we show that in a certain asymptotic regime, optimal singular value shrinkage with whitening converges to the best linear predictor, whereas without whitening it converges to a suboptimal linear predictor. We prove that for generic signals, whitening improves estimation of the principal components, and increases a natural signal-to-noise ratio of the observations. We also show that for rank one signals, our estimated principal components achieve the asymptotic minimax rate.
引用
收藏
页码:3009 / 3037
页数:29
相关论文
共 50 条
  • [1] HePPCAT: Probabilistic PCA for Data With Heteroscedastic Noise
    Hong, David
    Gilman, Kyle
    Balzano, Laura
    Fessler, Jeffrey A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4819 - 4834
  • [2] PROBABILISTIC PCA FOR HETEROSCEDASTIC DATA
    Hong, David
    Balzano, Laura
    Fessler, Jeffrey A.
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 26 - 30
  • [3] Combining the spectral PCA and spatial PCA fusion methods by an optimal filter
    Shandoosti, Hamid Reza
    Ghassemian, Hassan
    [J]. INFORMATION FUSION, 2016, 27 : 150 - 160
  • [4] Estimation of Optimal Fiducial Target Registration Error in the Presence of Heteroscedastic Noise
    Ma, Burton
    Moghari, Mehdi H.
    Ellis, Randy E.
    Abolmaesumi, Purang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) : 708 - 723
  • [5] Towards a Theoretical Analysis of PCA for Heteroscedastic Data
    Hong, David
    Balzano, Laura
    Fessler, Jeffrey A.
    [J]. 2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 496 - 503
  • [6] DOA Estimation in heteroscedastic noise
    Gerstoft, Peter
    Nannuru, Santosh
    Mecklenbraeuker, Christoph F.
    Leus, Geert
    [J]. SIGNAL PROCESSING, 2019, 161 : 63 - 73
  • [7] Active learning in heteroscedastic noise
    Antos, Andras
    Grover, Varun
    Szepesvari, Csaba
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (29-30) : 2712 - 2728
  • [8] Cavitation Noise Classification Based on Spectral Statistic Features and PCA Algorithm
    Jiang, Xiangdong
    Wang, Qiang
    Zeng, Xiangyang
    [J]. 2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 438 - 441
  • [9] Parametric Covariance Prediction for Heteroscedastic Noise
    Hu, Humphrey
    Kantor, George
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3052 - 3057
  • [10] DENOISING AND ENHANCEMENT OF MAMMOGRAPHIC IMAGES UNDER THE ASSUMPTION OF HETEROSCEDASTIC ADDITIVE NOISE BY AN OPTIMAL SUBBAND THRESHOLDING
    Mencattini, Arianna
    Rabottino, Giulia
    Salmeri, Marcello
    Lojacono, Roberto
    Sciunzi, Berardino
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (05) : 713 - 741