The neurological disorders include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, stroke, epilepsy, brain tumours, multiple sclerosis etc. which are the leading health concerns in today's world. The conventional therapies are not yet successful in treating these diseases because of the presence of intracellular and extracellular barriers across the central nervous system (CNS), which poses the major challenge of drug delivery to the CNS. The field of nanotechnology promises revolutionary advances of treating these devastating neuronal human disorders and has shown great potential to overcome the problems related to the conventional treatment approaches. Gold nanoparticles, micelles, quantum dots, polymeric nanoparticles, liposomes, microparticles, carbon nanotubes, fullerenes and several other types of nanoscale materials have been engineered and utilized for various purposes including improvement of diagnosis, delivery of neurotherapeutic agents, treatment-response assessment etc. The nanomaterials cross those barriers, target specific cell or signalling pathway, respond to endogenous stimuli, act as a vehicle for gene delivery and also support nerve regeneration. Such frameworks may serve as effective drug delivery systems and can pave the way for effective treatments in the neuronal disorders. It has been found that the drugs encapsulated with nanomaterials have better efficacy in eradicating the diseases than the bulk materials used in conventional therapies. But there are several basic concerns related to the therapeutic approach of nanotechnology, including health issues and other problems because of the very small size of nanomaterials. This review mainly aims to focus on the barriers which guard the CNS, the nanomaterials as effective drug delivery systems, their preparation, mechanism of action, nanoformulations of different neuroprotective agents, nano-neurotoxicity and future perspectives.