TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining

被引:0
|
作者
Huang, Zhi [1 ,2 ]
Han, Zhi [3 ]
Wang, Tongxin [4 ]
Shao, Wei [3 ]
Xiang, Shunian [5 ]
Salama, Paul [2 ]
Rizkalla, Maher [2 ]
Huang, Kun [3 ,6 ]
Zhang, Jie [5 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Indiana Univ Purdue Univ Indianapolis, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
[3] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[4] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA
[5] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[6] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN 46202 USA
关键词
Network mining; Gene co-expression network; Transcriptomic data analysis; LmQCM; Web server; Survival analysis; GENE; EXPRESSION;
D O I
10.1016/j.gpb.2019.05.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene co-expression network (GCN) mining identifies gene modules with highly correlated expression profiles across samples/conditions. It enables researchers to discover latent gene/molecule interactions, identify novel gene functions, and extract molecular features from certain disease/condition groups, thus helping to identify disease biomarkers. However, there lacks an easy-to-use tool package for users to mine GCN modules that are relatively small in size with tightly connected genes that can be convenient for downstream gene set enrichment analysis, as well as modules that may share common members. To address this need, we developed an online GCN mining tool package: TSUNAMI (Tools SUite for Network Analysis and MIning). TSUNAMI incorporates our state-of-the-art lmQCM algorithm to mine GCN modules for both public and user-input data (microarray, RNA-seq, or any other numerical omics data), and then performs downstream gene set enrichment analysis for the identified modules. It has several features and advantages: 1) a user-friendly interface and real-time co-expression network mining through a web server; 2) direct access and search of NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, as well as user-input gene expression matrices for GCN module mining; 3) multiple co-expression analysis tools to choose from, all of which are highly flexible in regards to parameter selection options; 4) identified GCN modules are summarized to eigengenes, which are convenient for users to check their correlation with other clinical traits; 5) integrated downstream Enrichr enrichment analysis and links to other gene set enrichment tools; and 6) visualization of gene loci by Circos plot in any step of the process. The web service is freely accessible through URL: https://biolearns.medicine.iu.edu/. Source code is available at https://github.com/huangzhii/TSUNAMI/.
引用
收藏
页码:1023 / 1031
页数:9
相关论文
共 50 条
  • [1] TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining
    Zhi Huang
    Zhi Han
    Tongxin Wang
    Wei Shao
    Shunian Xiang
    Paul Salama
    Maher Rizkalla
    Kun Huang
    Jie Zhang
    [J]. Genomics,Proteomics & Bioinformatics., 2021, (06) - 1031
  • [2] TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining
    Zhi Huang
    Zhi Han
    Tongxin Wang
    Wei Shao
    Shunian Xiang
    Paul Salama
    Maher Rizkalla
    Kun Huang
    Jie Zhang
    [J]. Genomics,Proteomics & Bioinformatics, 2021, 19 (06) : 1023 - 1031
  • [3] Text Mining for Translational Bioinformatics
    Dai, Hong-Jie
    Wei, Chih-Hsuan
    Kao, Hung-Yu
    Liu, Rey-Long
    Tsai, Richard Tzong-Han
    Lu, Zhiyong
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [4] Data Mining in Translational Bioinformatics
    Zhao, Xing-Ming
    Gao, Jean X.
    Nacher, Jose C.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [5] BOOTABLE: bioinformatics benchmark tool suite
    Hanussek, Maximilian
    Bartusch, Felix
    Krueger, Jens
    Kohlbacher, Oliver
    [J]. 2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 157 - 160
  • [6] Chapter 16: Text Mining for Translational Bioinformatics
    Cohen, K. Bretonnel
    Hunter, Lawrence E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (04)
  • [7] BOOTABLE: Bioinformatics benchmark tool suite for applications and hardware
    Hanussek, Maximilian
    Bartusch, Felix
    Krueger, Jens
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 1016 - 1026
  • [8] SiLK: A Tool Suite for Unsampled Network Flow Analysis at Scale
    Thomas, Mark
    Metcalf, Leigh
    Spring, Jonathan
    Krystosek, Paul
    Prevost, Katherine
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 184 - 191
  • [9] Data Mining and Network Analytics in Bioinformatics
    Zou, Quan
    [J]. CURRENT PROTEOMICS, 2018, 15 (03) : 174 - 174
  • [10] CaveCrawler: an interactive analysis suite for cavefish bioinformatics
    Perry, Annabel
    McGaugh, Suzanne E.
    Keene, Alex C.
    Blackmon, Heath
    [J]. G3-GENES GENOMES GENETICS, 2022, 12 (08):