Mitigated voltage decay and improved electrochemical properties of 0.5Li2MnO3•0.5LiNixCoyMn1-x-yO2 cathode via composition optimizing

被引:2
|
作者
Li, Xichao [1 ]
Liu, Luzhou [1 ]
Yang, Yang [1 ]
Niu, Quanhai [2 ]
Zheng, Lili [3 ]
Sun, Xiaolin [2 ]
Wu, Jianfei [2 ]
机构
[1] CRRC Qingdao Sifang Rolling Stock Res Inst Co Ltd, Energy Saving Business Div, Qingdao 266031, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266042, Peoples R China
[3] Qingdao Univ, Coll Mech & Elect Engn, Natl Engn Res Ctr Intelligent Elect Vehicle Power, Qingdao 266071, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-rich cathode material; Specific capacity; Voltage decay; Rate performance; MN-RICH CATHODES; LI-RICH; SURFACE MODIFICATION; REDOX CHEMISTRY; LITHIUM; OXIDE; CAPACITY; PERFORMANCE; FADE; O-2;
D O I
10.1007/s11581-021-04093-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the most promising high-energy-density cathode material for lithium-ion batteries, the Li-rich layered oxide materials (LLOs) suffer from severe voltage decay, which hinders their practical application. In this work, a series of 0.5Li(2)MnO(3)center dot 0.5LiNi(x)Co(y)Mn(1-x-y)O(2) with different compositions are designed and prepared. It is found that as the Ni content increased, the electrochemical activation of the Li2MnO3 component is restrained, resulting in the reduced capacity of LLOs. Hence, 0.5Li(2)MnO(3)center dot 0.5LiNi(0.8)Co(0.1)Mn(0.1)O(2) delivers a low capacity of 228 mAh g(-1) compared to 251 mAh g(-1) of 0.5Li(2)MnO(3)center dot 0.5LiNi(1/3)Co(1/3)Mn(1/3)O(2). Furthermore, the increased Ni3+/Ni2+ ratio as well as the reduced electrochemical activation of Li2MnO3 restrains the Mn4+/Mn3+ redox and stabilizes the layered structure. As a result, the layered-to-spinel phase transformation is suppressed and 0.5Li(2)MnO(3) 0.5LiNi(0.8)Co(0.1)Mn(0.1)O(2) delivers a smaller voltage decay of 373 mV after 150 cycles at 1 C. Meanwhile, high-Ni-content LLOs exhibit lower charge transfer resistance and enhanced Li+ diffusion constant, which endows them improved rate performance. Especially, LL-523 delivers a combination of high capacity of 247 mAh g(-1), improved rate capability of 98 mAh g(-1) at 10 C, and mitigated voltage decay of 486 mV after 150 cycles at 1 C. Our results provide an effective way to design novel Li-rich layered cathode via composition optimization for the improved electrochemical performances.
引用
收藏
页码:2889 / 2900
页数:12
相关论文
共 50 条
  • [1] Mitigated voltage decay and improved electrochemical properties of 0.5Li2MnO3∙0.5LiNixCoyMn1-x-yO2 cathode via composition optimizing
    Xichao Li
    Luzhou Liu
    Yang Yang
    Quanhai Niu
    Lili Zheng
    Xiaolin Sun
    Jianfei Wu
    Ionics, 2021, 27 : 2889 - 2900
  • [2] Synthesis and Electrochemical Properties of 0.5Li2MnO3•0.5LiMn0.5Ni0.5O2
    Zhong Sheng-wen
    Hu Wei
    Zhang Qian
    CHINESE CERAMICS COMMUNICATIONS, 2010, 105-106 : 664 - 667
  • [3] Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3•0.5LiCoO2 cathode material
    Kaewmala, Songyoot
    Chantrasuwan, Patcharapohn
    Wiriya, Narinthron
    Srilomsak, Sutham
    Limphirat, Wanwisa
    Limthongkul, Pimpa
    Meethong, Nonglak
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Structural and Electrochemical Kinetic Properties of 0.5Li2MnO3•0.5LiCoO2 Cathode Materials with Different Li2MnO3 Domain Sizes
    Kaewmala, Songyoot
    Limphirat, Wanwisa
    Yordsri, Visittapong
    Kim, Hyunwoo
    Muhammad, Shoaib
    Yoon, Won-Sub
    Srilomsak, Sutham
    Limthongkul, Pimpa
    Meethong, Nonglak
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material
    Songyoot Kaewmala
    Patcharapohn Chantrasuwan
    Narinthron Wiriya
    Sutham Srilomsak
    Wanwisa Limphirat
    Pimpa Limthongkul
    Nonglak Meethong
    Scientific Reports, 7
  • [6] Structural and Electrochemical Kinetic Properties of 0.5Li2MnO3∙0.5LiCoO2 Cathode Materials with Different Li2MnO3 Domain Sizes
    Songyoot Kaewmala
    Wanwisa Limphirat
    Visittapong Yordsri
    Hyunwoo Kim
    Shoaib Muhammad
    Won-Sub Yoon
    Sutham Srilomsak
    Pimpa Limthongkul
    Nonglak Meethong
    Scientific Reports, 9
  • [7] Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes
    Yunjian Liu
    Sanbin Liu
    Ionics, 2013, 19 : 477 - 481
  • [8] On the structural integrity and electrochemical activity of a 0.5Li2MnO3•0.5LiCoO2 cathode material for lithium-ion batteries
    Rana, Jatinkumar
    Kloepsch, Richard
    Li, Jie
    Scherb, Tobias
    Schumacher, Gerhard
    Winter, Martin
    Banhart, John
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9099 - 9110
  • [9] Effect of cooling method on the electrochemical performance of 0.5Li2MnO3•0.5LiNi0.5Mn0.5O2 cathodes
    Liu, Yunjian
    Liu, Sanbin
    IONICS, 2013, 19 (03) : 477 - 481
  • [10] Fe-doping effects on the structural and electrochemical properties of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 electrode material
    F. Lian
    M. Gao
    W. H. Qiu
    P. Axmann
    M. Wohlfahrt-Mehrens
    Journal of Applied Electrochemistry, 2012, 42 : 409 - 417