Governing Parameters Influencing CMAS Adhesion and Infiltration into Environmental/Thermal Barrier Coatings in Gas Turbine Engines

被引:0
|
作者
Ghoshal, Anindya [1 ]
Walock, Michael J. [1 ]
Murugan, Muthuvel [1 ]
Mock, Clara [1 ]
Bravo, Luis [1 ]
Pepi, Marc [1 ]
Nieto, Andy [2 ]
Wright, Andrew [3 ]
Luo, Jian [3 ]
Jain, Nishan [4 ]
Flatau, Alison [4 ]
Fehrenbacher, Larry [5 ]
机构
[1] US Army, Res Lab, Aberdeen Proving Ground, MD 21005 USA
[2] Naval Postgrad Sch, Monterey, CA USA
[3] Univ Calif San Diego, San Diego, CA 92103 USA
[4] Univ Maryland, College Pk, MD 20742 USA
[5] Technol Assessment & Transfer Inc, Annapolis, MD USA
关键词
DEGRADATION; TEMPERATURE; RESISTANT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sand particulate ingestion into modern gas turbine engines for fixed wing and vertical lift aircraft is a significant challenge for both military and civilian missions. ARL as part of a DoD funded Laboratory University Collaborative Initiative (LUCI) and Vannevar Bush Fellowship at UCSD are investigating the governing parameters that primarily influences the CMAS adhesion kinetics and infiltration on the standard Yttria Stabilized Zirconia (YSZ) as part of metallic single crystal Nickel superalloys TBC and SiC/SiC CMC T/EBCs. Current research shows various parameters including CMAS viscosity, porosity, adhesion strength, contact angle (wettability factor), geological factors affecting sand formation, coating and structural substrate roughness and surface temperature, internal flow Reynolds number, temperature, pressure, Mach number, boundary layer and bleed air, coating process (columnar vs splat morphology), tortuosity factor et al affects the CMAS adhesion and infiltration. This paper is a summary of our current research to identify and study the governing parameters that affects the CMAS formation, adhesion and infiltration and the underlying interfaces between CMAS and T/EBC, bond coat and the structural substrate. This work is aligned with Army Modernization Priority Future Vertical Lift and PEO Aviation Advanced Turbine Engine (ATE) Program.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SAND-PHOBIC THERMAL/ENVIRONMENTAL BARRIER COATINGS FOR GAS TURBINE ENGINES Introduction
    Walock, Michael J.
    Ghoshal, Anindya
    Murugan, Muthuvel
    Nieto, Andy
    Mock, Clara
    Pepi, Marc S.
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (17) : 2247 - 2248
  • [2] Thermal barrier coatings for enhanced efficiency of gas turbine engines
    Gurrappa, I.
    Rao, A. Sambasiva
    SURFACE & COATINGS TECHNOLOGY, 2006, 201 (06): : 3016 - 3029
  • [3] Ceramic thermal barrier coatings for commercial gas turbine engines
    Meier, Susan Manning
    Gupta, Dinesh K.
    Sheffler, Keith D.
    JOM, 1991, 43 (03) : 50 - 53
  • [4] CERAMIC THERMAL BARRIER COATINGS FOR COMMERCIAL GAS-TURBINE ENGINES
    MEIER, SM
    GUPTA, DK
    SHEFFLER, KD
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1991, 43 (03): : 50 - 53
  • [5] Thermal-barrier coatings for advanced gas-turbine engines
    Zhu, DM
    Miller, RA
    MRS BULLETIN, 2000, 25 (07) : 43 - 47
  • [6] Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines
    Fergus, Jeffrey W.
    METALLURGICAL AND MATERIALS TRANSACTIONS E-MATERIALS FOR ENERGY SYSTEMS, 2014, 1 (02): : 118 - 131
  • [7] CERAMIC-METALLIC THERMAL BARRIER COATINGS FOR GAS-TURBINE ENGINES
    BOONE, DH
    PEROULAK.A
    WILKINS, CR
    AMERICAN CERAMIC SOCIETY BULLETIN, 1974, 53 (08): : 610 - 610
  • [8] Thermal-barrier coatings for more efficient gas-turbine engines
    Clarke, David R.
    Oechsner, Matthias
    Padture, Nitin P.
    MRS BULLETIN, 2012, 37 (10) : 891 - 902
  • [9] Thermal-barrier coatings for more efficient gas-turbine engines
    David R. Clarke
    Matthias Oechsner
    Nitin P. Padture
    MRS Bulletin, 2012, 37 : 891 - 898
  • [10] CMAS infiltration effect on the magnitude of residual stresses in thermal barrier coatings
    Yanez-Contreras, Pedro
    Oscar Barceinas-Sanchez, Jose Dolores
    Agustin Poblano-Salas, Carlos
    Martin Medina-Flores, Jose
    Leon-Rodriguez, Miguel
    Alfredo Jimenez-Garcia, Jose
    DYNA, 2020, 95 (06): : 576 - 577