Bayesian kernel-based system identification with quantized output data

被引:6
|
作者
Bottegal, Giulio [1 ,2 ]
Pillonetto, Gianluirri [3 ]
Hjalmarsson, Hakan [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn, Automat Control Lab, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Elect Engn, ACCESS Linnaeus Ctr, Stockholm, Sweden
[3] Univ Padua, Dept Informat Engn, Padua, Italy
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
关键词
D O I
10.1016/j.ifacol.2015.12.170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as e starting point to cast, our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo (MCMC) methods to provide an estimate of the system. In particular, we show how to design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods when employed in identification of systems with quantized data. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 50 条
  • [1] A new kernel-based approach to system identification with quantized output data
    Bottegal, Giulio
    Hjalmarsson, Hakan
    Pillonetto, Gianluigi
    [J]. AUTOMATICA, 2017, 85 : 145 - 152
  • [2] A kernel-based identification approach for a class of nonlinear systems with quantized output data
    Ding, Jiling
    Zhang, Weihai
    Zhao, Junsheng
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 128
  • [3] Kernel-based system identification with manifold regularization: A Bayesian perspective
    Mazzoleni, Mirko
    Chiuso, Alessandro
    Scandella, Matteo
    Formentin, Simone
    Previdi, Fabio
    [J]. AUTOMATICA, 2022, 142
  • [4] Kernel-based system identification from noisy and incomplete input-output data
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2061 - 2066
  • [5] A kernel-based approach to Hammerstein system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 1011 - 1016
  • [6] On Robustness of Kernel-Based Regularized System Identification
    Khosravi, Mohammad
    Smith, Roy S.
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 749 - 754
  • [7] A new kernel-based approach for system identification
    De Nicolao, Giuseppe
    Pillonetto, Gianluigi
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4510 - +
  • [8] On the estimation of initial conditions in kernel-based system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1120 - 1125
  • [9] A nonparametric kernel-based approach to Hammerstein system identification
    Risuleo, Riccardo Sven
    Bottegal, Giulio
    Hjalmarsson, Hakan
    [J]. AUTOMATICA, 2017, 85 : 234 - 247
  • [10] Kernel-based identification of Wiener-Hammerstein system
    Mzyk, Grzegorz
    Wachel, Pawel
    [J]. AUTOMATICA, 2017, 83 : 275 - 281