Principal Component Analysis of Triangular Fuzzy Number Data

被引:0
|
作者
Chen, Na-xin [1 ]
Zhang, Yun-jie [1 ]
机构
[1] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
关键词
Principal component analysis; triangular fuzzy number; dimension reduction; feature extraction; RECOGNITION SYSTEM; INTERVAL DATA; C-MEANS; PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is a well-known tool often used for the exploratory analysis of a. data set, which can be used to reduce the data dimensionality and also to decrease the dependency among features. The traditional PCA algorithms are designed aiming at numerical data instead of non-numerical data. In this article we propose a generalized PCA algorithm which tackles a problem where data, is linguistic variable represented by triangular fuzzy number. Using the information provided by the centroid and fuzzy boundary of triangular fuzzy number, the proposed method starts with translating triangular fuzzy numbers into real numbers, then PCA is carried out on high-dimensional real number data set. Finally, the application of the proposed algorithm to a triangular fuzzy number data set is described.
引用
收藏
页码:797 / 808
页数:12
相关论文
共 50 条
  • [1] Fuzzy principal component analysis for fuzzy data
    Yabuuchi, Y
    Watada, J
    Nakamori, Y
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1127 - 1132
  • [2] Principal Component Analysis of symmetric fuzzy data
    Giordani, P
    Kiers, HAL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 519 - 548
  • [3] Kernel principal component analysis for fuzzy point data set
    Wei, Li-Li
    Han, Chong-Zhao
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2007, : 683 - 687
  • [4] Correction of Copy Number Variation Data Using Principal Component Analysis
    Chen, Jiayu
    Liu, Jingyu
    Calhoun, Vince D.
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 827 - 828
  • [5] Principal component analysis of fuzzy data using autoassociative neural networks
    Denoeux, T
    Masson, MH
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (03) : 336 - 349
  • [6] A comparison of three methods for principal component analysis of fuzzy interval data
    Giordani, Paolo
    Kiers, Henk A. L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) : 379 - 397
  • [7] Fuzzy principal component regression (FPCR) for fuzzy input and output data
    Huang, JJ
    Tzeng, GH
    Ong, CS
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (01) : 87 - 100
  • [8] Principal Component Analysis of Thermographic Data
    Winfree, William P.
    Cramer, K. Elliott
    Zalameda, Joseph N.
    Howell, Patricia A.
    Burke, Eric R.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII, 2015, 9485
  • [9] Principal component analysis of genetic data
    Reich, David
    Price, Alkes L.
    Patterson, Nick
    NATURE GENETICS, 2008, 40 (05) : 491 - 492
  • [10] Principal component analysis with autocorrelated data
    Zamprogno, Bartolomeu
    Reisen, Valderio A.
    Bondon, Pascal
    Aranda Cotta, Higor H.
    Reis Jr, Neyval C.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2117 - 2135