Approximate Maximum-likelihood Identification of Linear Systems from Quantized Measurements

被引:4
|
作者
Risuleo, Riccardo Sven [1 ]
Bottegal, Giulio [2 ]
Hjalmarsson, Hakan [1 ]
机构
[1] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, Stockholm, Sweden
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
Least-squares approximation; Maximum-likelihood estimators; quantized signals; BINARY-VALUED OBSERVATIONS; FIR SYSTEMS; OUTPUT DATA;
D O I
10.1016/j.ifacol.2018.09.169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze likelihood-based identification of systems that are linear in the parameters from quantized output data; in particular, we propose a method to find approximate maximum-likelihood and maximum-a-posteriori solutions. The method consists of appropriate least-squares projections of the middle point of the active quantization intervals. We show that this approximation maximizes a variational approximation of the likelihood and we provide an upper bound for the approximation error. In a simulation study, we compare the proposed method with the true maximum-likelihood estimate of a finite impulse response model. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:724 / 729
页数:6
相关论文
共 50 条
  • [1] The approximate maximum-likelihood certificate
    Goldenberg, Idan
    Burshtein, David
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 1278 - 1282
  • [2] The Approximate Maximum-Likelihood Certificate
    Goldenberg, Idan
    Burshtein, David
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 6049 - 6059
  • [3] A MAXIMUM-LIKELIHOOD IDENTIFICATION METHOD FOR STABLE AUTOREGRESSIVE LINEAR-SYSTEMS
    INABA, H
    SHIOYA, I
    ICHINO, M
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1982, 13 (01) : 21 - 37
  • [4] Linear and approximate maximum likelihood localization from TOA measurements
    Chan, YT
    Yau, CH
    Ching, PC
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 2, PROCEEDINGS, 2003, : 295 - 298
  • [5] An approximate maximum-likelihood estimator for localisation using bistatic measurements
    Fraenken, Dietrich
    [J]. 2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [6] NON-CONVERGENCE OF THE APPROXIMATE MAXIMUM-LIKELIHOOD IDENTIFICATION ALGORITHM
    PANUSKA, V
    [J]. AUTOMATICA, 1980, 16 (02) : 215 - 217
  • [7] Blind Maximum-Likelihood Identification of Wiener Systems
    Vanbeylen, Laurent
    Pintelon, Rik
    Schoukens, Johan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (08) : 3017 - 3029
  • [8] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    [J]. AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [9] AN APPROXIMATE ANALYTICAL MAXIMUM-LIKELIHOOD TECHNIQUE
    AVIGNONE, FT
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1986, 245 (2-3): : 525 - 529
  • [10] MAXIMUM-LIKELIHOOD METHOD FOR IDENTIFYING LINEAR SISO SYSTEMS
    SHEARER, BR
    [J]. ELECTRONICS LETTERS, 1972, 8 (08) : 210 - &