Hybrid differential evolution including geometric mean mutation for optimization of biochemical systems

被引:13
|
作者
Liu, Pang-Kai [1 ]
Wang, Feng-Sheng [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 62102, Taiwan
关键词
Evolutionary algorithm; Fed-batch optimization; Inverse problem; Genetic algorithm; Parameter estimation; FED-BATCH FERMENTATION; PARAMETER-ESTIMATION; DYNAMIC OPTIMIZATION; GLOBAL OPTIMIZATION; FUZZY OPTIMIZATION; ALGEBRAIC SYSTEMS; ALGORITHMS; EFFICIENT; DESIGN;
D O I
10.1016/j.jtice.2009.05.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Many process optimization problems have large parameter search spaces. Evolutionary algorithms generally lack the capability to solve such problems. In this study, we have introduced a geometric mean mutation into the hybrid differential evolution algorithm to replace genes having very small or large values. This operation could avoid generating perturbed individuals that are clustered near the parameter search bounds. The comparison is performed on a fed-batch optimization problem, an inverse problem, and a number of benchmark unconstrained and constrained optimization problems. The results from this study show that the proposed algorithm outperforms the other algorithms. (C) 2009 Taiwan Institute of Chemical Engineers. published by Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [1] Hybrid differential evolution with geometric mean mutation in parameter estimation of bioreaction systems with large parameter search space
    Liu, Pang-Kai
    Wang, Feng-Sheng
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (11) : 1851 - 1860
  • [2] A new hybrid mutation operator for multiobjective optimization with differential evolution
    Karthik Sindhya
    Sauli Ruuska
    Tomi Haanpää
    Kaisa Miettinen
    [J]. Soft Computing, 2011, 15 : 2041 - 2055
  • [3] A new hybrid mutation operator for multiobjective optimization with differential evolution
    Sindhya, Karthik
    Ruuska, Sauli
    Haanpaa, Tomi
    Miettinen, Kaisa
    [J]. SOFT COMPUTING, 2011, 15 (10) : 2041 - 2055
  • [4] Hybrid Differential Evolution for Estimation of Kinetic Parameters for Biochemical Systems
    Zhao Chao
    Xu Qiaoling
    Lin Siming
    Li Xuelai
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2013, 21 (02) : 155 - 162
  • [5] The Hybrid Differential Evolution with Dynamic Scaling Mutation and Wrapper Local Search for Optimization Problems
    Lu, Chun-Liang
    Chiu, Shih-Yuan
    Hsu, Chih-Hsu
    Yen, Shi-Jim
    [J]. APPLIED SCIENCE AND PRECISION ENGINEERING INNOVATION, PTS 1 AND 2, 2014, 479-480 : 989 - +
  • [6] Differential evolution algorithms using hybrid mutation
    P. Kaelo
    M. M. Ali
    [J]. Computational Optimization and Applications, 2007, 37 : 231 - 246
  • [7] Differential evolution algorithms using hybrid mutation
    Kaelo, P.
    Ali, M. M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2007, 37 (02) : 231 - 246
  • [8] A Hybrid Differential Evolution for Numerical Optimization
    Miao, Xiaofeng
    Mu, Dejun
    Han, Xingwen
    Zhang, Degang
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2115 - +
  • [9] Hybrid differential evolution for noisy optimization
    Liu, Bo
    Zhang, Xuejun
    Ma, Hannan
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 587 - +
  • [10] Antenna Optimization by Hybrid Differential Evolution
    Zhang, Li
    Jiao, Yong-Chang
    Li, Hong
    Zhang, Fu-Shun
    [J]. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2010, 20 (01) : 51 - 55