Oblivious Multi-variate Polynomial Evaluation

被引:0
|
作者
Gavin, Gerald [1 ]
Minier, Marine [1 ]
机构
[1] Univ Lyon 1, UCBL, ERIC Lab, F-69622 Villeurbanne, France
来源
PROGRESS IN CRYPTOLOGY - INDOCRYPT 2009, PROCEEDINGS | 2009年 / 5922卷
关键词
Homomorphic encryption schemes; Oblivious Polynomial Evaluation (OPE); semantic security; COMPUTATION; ENCRYPTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a protocol for Oblivious Polynomial Evaluation (OPE) considering a multi-variate polynomial. There are two parties, Alice who has a secret multi-variate polynomial f and Bob who has an input x = (x(1), ..., x(T)). Thus, Bob wants to compute f(x) without any information leakage: Alice learns nothing about x and Bob learns only what can be inferred from f (x). In [4], the authors proposed a solution for this problem using Oblivious Transfer (OT) protocol only. In this paper, we propose efficient OPE protocols for the multi-variate case based upon additive and multiplicative homomorphic encryption schemes defined on the same domain. Our protocol only reveals the number of monomials.
引用
收藏
页码:430 / 442
页数:13
相关论文
共 50 条
  • [1] Robust Multi-Variate Temporal Features of Multi-Variate Time Series
    Liu, Sicong
    Poccia, Silvestro Roberto
    Candan, K. Selcuk
    Sapino, Maria Luisa
    Wang, Xiaolan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (01)
  • [2] Evaluation of Trend Localization with Multi-Variate Visualizations
    Livingston, Mark A.
    Decker, Jonathan W.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2053 - 2062
  • [3] Optimizing Loss Functions Through Multi-Variate Taylor Polynomial Parameterization
    Gonzalez, Santiago
    Miikkulainen, Risto
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 305 - 313
  • [4] Multi-variate run rules
    Tsai, CH
    Wang, SY
    Chang, CT
    Huang, SH
    PROCESS SYSTEMS ENGINEERING 2003, PTS A AND B, 2003, 15 : 1376 - 1381
  • [5] The multi-variate sampling problem
    Dalenius, T.
    SKANDINAVISK AKTUARIETIDSKRIFT, 1953, 36 (1-2): : 92 - 102
  • [6] MULTI-VARIATE PROBIT ANALYSIS
    ASHFORD, JR
    SOWDEN, RR
    BIOMETRICS, 1970, 26 (03) : 535 - &
  • [7] A multi-variate blind source separation algorithmA multi-variate blind source separation algorithm
    Goldhacker, M.
    Keck, P.
    Igel, A.
    Lang, E. W.
    Tome, A. M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 91 - 99
  • [8] Multi-variate mutual information for registration
    Boes, JL
    Meyer, CR
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 606 - 612
  • [9] Representation of few-group homogenized cross section by multi-variate polynomial regression
    Dinh Quoc Dang Nguyen
    Masiello, Emiliano
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [10] On Euler products and multi-variate Gaussians
    Hejhal, DA
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) : 223 - 226