Infinite conservation laws and new solutions of (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation

被引:7
|
作者
Zhang, Shi-Jie [1 ]
Bao, Taogetusang [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Ctr Appl Math Inner Mongolia, Hohhot 010022, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
(3+1)-dimensional gKDKK equation; bell polynomials theory; bilinear Backlund transformation; infinite conservation laws; variable separation method; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS; WAVE SOLUTIONS; MULTISOLITON SOLUTIONS; BELL POLYNOMIALS; FLUID-MECHANICS; OCEAN DYNAMICS; LATTICE;
D O I
10.1142/S0217979222500825
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation (gKDKK) is investigated. Based on Bell polynomial theory, the bilinear form, Bilinear Backlund transformation, Lax pair and infinite conservation laws of the equation are obtained. Lump solution and half periodic kink solution are obtained by combining the test function with bilinear form. Furthermore, with the help of the variable separation method, we obtain some new compound solutions composed of exponential function, trigonometric function, hyperbolic function, rational function and Jacobi elliptic function in various forms. Using computer software to draw the three-dimensional diagram and profile of the solutions, the dynamic properties of the solutions are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Localized wave solutions to (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Zhao, Shuang
    Wang, Hui
    Yu, Ming-Hui
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (08):
  • [2] Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Gao, Yidan
    Deng, Aiping
    [J]. NONLINEAR DYNAMICS, 2023, 111 (01) : 619 - 632
  • [3] Pfaffian solutions and nonlinear waves of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics
    Shen, Yuan
    Tian, Bo
    Cheng, Chong-Dong
    Zhou, Tian-Yu
    [J]. PHYSICS OF FLUIDS, 2023, 35 (02)
  • [4] On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Lian-Li Feng
    Shou-Fu Tian
    Hui Yan
    Li Wang
    Tian-Tian Zhang
    [J]. The European Physical Journal Plus, 131
  • [5] On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Feng, Lian-Li
    Tian, Shou-Fu
    Yan, Hui
    Wang, Li
    Zhang, Tian-Tian
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (07):
  • [6] MOLECULES AND NEW INTERACTIONAL STRUCTURES FOR A(2+1)-DIMENSIONAL GENERALIZED KONOPELCHENKO-DUBROVSKY-KAUP-KUPERSHMIDT EQUATION
    李岩
    姚若侠
    夏亚荣
    [J]. Acta Mathematica Scientia, 2023, 43 (01) : 80 - 96
  • [7] Molecules and New Interactional Structures for a (2+1)-Dimensional Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
    Li, Yan
    Yao, Ruoxia
    Xia, Yarong
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 80 - 96
  • [8] Molecules and New Interactional Structures for a (2+1)-Dimensional Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
    Yan Li
    Ruoxia Yao
    Yarong Xia
    [J]. Acta Mathematica Scientia, 2023, 43 : 80 - 96
  • [9] The phase transition of control parameters for the (3+1)-dimensional Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in plasma or ocean dynamics
    Yao, Xuemin
    Ma, Jinying
    Meng, Gaoqing
    [J]. NONLINEAR DYNAMICS, 2024, 112 (20) : 18435 - 18451
  • [10] Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Cheng, Qiaoxin
    Deng, Aiping
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (09)