Two new singular value inclusion sets for rectangular tensors

被引:7
|
作者
Zhao, Jianxing [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2019年 / 67卷 / 12期
基金
中国国家自然科学基金;
关键词
Rectangular tensors; nonnegative tensors; singular value; inclusion sets; CONVERGENCE; ELLIPTICITY;
D O I
10.1080/03081087.2018.1494125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a real th order dimensional rectangular tensor. A new singular value inclusion set for rectangular tensors with m=n is given and proved to be tighter than those in [Zhao JX, Li CQ. Singular value inclusion sets for rectangular tensors. Linear Multilinear A. 2018;66(7):1333?1350] and [Sang CL. An S-type singular value inclusion set for rectangular tensors. J Inequal Appl. 2017;2017:141]. Soon afterwards, this new singular value inclusion set is generalized to the general case, that is, m and n are not necessarily equal. As an application of the two sets, two upper bounds and lower bounds for the largest singular value of nonnegative rectangular tensors are obtained.
引用
收藏
页码:2451 / 2470
页数:20
相关论文
共 50 条
  • [1] Singular value inclusion sets for rectangular tensors
    Zhao, Jianxing
    Li, Chaoqian
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (07): : 1333 - 1350
  • [2] Singular value inclusion sets of rectangular tensors
    Yao, Hongmei
    Zhang, Can
    Liu, Lei
    Zhou, Jiang
    Bu, Changjiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 576 : 181 - 199
  • [3] Z-singular value and Z-singular value inclusion sets for tensors
    Yun Miao
    Chaoqian Li
    Yimin Wei
    Japan Journal of Industrial and Applied Mathematics, 2019, 36 : 1055 - 1087
  • [4] Z-singular value and Z-singular value inclusion sets for tensors
    Miao, Yun
    Li, Chaoqian
    Wei, Yimin
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (03) : 1055 - 1087
  • [5] An S-type singular value inclusion set for rectangular tensors
    Caili Sang
    Journal of Inequalities and Applications, 2017
  • [6] An S-type singular value inclusion set for rectangular tensors
    Sang, Caili
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [7] Inclusion sets for the singular values of a rectangular matrix
    Kolotilina L.Yu.
    Journal of Mathematical Sciences, 2009, 157 (5) : 723 - 729
  • [8] New eigenvalue inclusion sets for tensors
    Li, Chaoqian
    Li, Yaotang
    Kong, Xu
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) : 39 - 50
  • [9] Bound for the largest singular value of nonnegative rectangular tensors
    He, Jun
    Liu, Yan-Min
    Ke, Hua
    Tian, Jun-Kang
    Li, Xiang
    OPEN MATHEMATICS, 2016, 14 : 761 - 766
  • [10] New inclusion sets for singular values
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    Ren, Ze-Rong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,