Mexican sign language recognition using normalized moments and artificial neural networks

被引:3
|
作者
Solis-, J-Francisco, V [1 ]
Toxqui-Quitl, Carina [2 ]
Martinez-Martinez, David [1 ]
Margarita, H-G [1 ]
机构
[1] Univ Autonoma Estado Mexico, Inst Literario 100, Toluca, Estado De Mexic, Mexico
[2] Univ Politecnica Tulancingo, Ingn 100, Tulancingo, Mexico
关键词
Mexican Sign Language Recognition; Normalized Moments; Multi-Layer Perceptron; Computer Vision System;
D O I
10.1117/12.2061077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Automatic Mexican Sign Language and Digits Recognition using Normalized Central Moments
    Solis, Francisco
    Martinez, David
    Espinoza, Oscar
    Toxqui, Carina
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIX, 2016, 9971
  • [2] Sign Language Recognition using Neural Networks
    Dogic, Sabaheta
    Karli, Gunay
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (04): : 296 - 301
  • [3] Automatic Recognition of Mexican Sign Language Using a Depth Camera and Recurrent Neural Networks
    Mejia-Perez, Kenneth
    Cordova-Esparza, Diana-Margarita
    Terven, Juan
    Herrera-Navarro, Ana-Marcela
    Garcia-Ramirez, Teresa
    Ramirez-Pedraza, Alfonso
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [4] American Sign Language word recognition with a sensory glove using artificial neural networks
    Oz, Cemil
    Leu, Ming C.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (07) : 1204 - 1213
  • [5] Sign Language Recognition Using Convolutional Neural Networks
    Pigou, Lionel
    Dieleman, Sander
    Kindermans, Pieter-Jan
    Schrauwen, Benjamin
    [J]. COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 572 - 578
  • [6] Recognition of sign language gestures using neural networks
    Vamplew, Simon
    [J]. NEUROPSYCHOLOGICAL TRENDS, 2007, (01) : 31 - 41
  • [7] Recognition of vowels letters of Turkish sign language by artificial neural networks
    Selda, Bayrak
    Vasif, Nabiyev V.
    [J]. 2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 125 - +
  • [8] Peruvian Sign Language Recognition Using Recurrent Neural Networks
    Barrientos-Villalta, Geraldine Fiorella
    Quiroz, Piero
    Ugarte, Willy
    [J]. ADVANCED RESEARCH IN TECHNOLOGIES, INFORMATION, INNOVATION AND SUSTAINABILITY, ARTIIS 2022, PT I, 2022, 1675 : 459 - 473
  • [9] Indian Sign Language Recognition Using Optimized Neural Networks
    Hore, Sirshendu
    Chatterjee, Sankhadeep
    Santhi, V.
    Dey, Nilanjan
    Ashour, Amira S.
    Balas, Valentina Emilia
    Shi, Fuqian
    [J]. INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 2, 2017, 455 : 553 - 563
  • [10] Using Convolutional Neural Networks for Fingerspelling Sign Recognition in Brazilian Sign Language
    Lima, Douglas F. L.
    Salvador Neto, Armando S.
    Santos, Ewerton N.
    Araujo, Tiago Maritan U.
    Rego, Thais Gaudencio
    [J]. WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2019, : 109 - 115