Cytochrome P450 3A4 (CYP3A4) is the most versatile enzyme involved in drug metabolism. The timedependent inhibition of CYP3A4 by acacetin, apigenin, chrysin, and pinocembrin was experimentally detected, but not entirely elaborated so far. Thus, a two-level QM/MM (Quantum Mechanics/Molecular Mechanics) model is developed to yield insights into the receptor-flavonoid recognition at the molecular scale. Active site residues and the flavonoid are modelled using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). QM/MM binding free energies are well correlated with experimental data, indicating the largest inhibitory effect of chrysin on enzyme activity at a submicromolar concentration. Consequently, quercetin (QUE) and flavopiridol (FLP) are observed as representative examples of structurally different flavonoids. The inhibition parameters for QUE and FLP are evaluated using the well-calibrated QM/MM strategy, thereby aiding to quantitatively conceive the functional behavior of the whole family of flavonoids. A kinetic threshold for further assessment of the drug-drug interactions underlying the time-dependent inhibition of CYP3A4 by flavonoids is explored.