Divide-and-conquer verification method for noisy intermediate-scale quantum computation

被引:0
|
作者
Takeuchi, Yuki [1 ]
Takahashi, Yasuhiro [1 ,2 ]
Morimae, Tomoyuki [3 ]
Tani, Seiichiro [1 ,4 ]
机构
[1] NTT Corp, NTT Commun Sci Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] Gunma Univ, Fac Informat, 4-2 Aramakimachi, Maebashi, Gumma 3718510, Japan
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
[4] Tokyo Inst Technol, Int Res Frontiers Initiat IRFI, Tokyo, Japan
来源
QUANTUM | 2022年 / 6卷
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several noisy intermediate-scale quantum computations can be regarded as logarithmic-depth quantum circuits on a sparse quantum computing chip, where two-qubit gates can be directly applied on only some pairs of qubits. In this paper, we propose a method to efficiently verify such noisy intermediate-scale quantum computation. To this end, we first characterize small-scale quantum operations with respect to the diamond norm. Then by using these characterized quantum operations, we estimate the fidelity psi(t)|(p) over cap (out)| psi(t) between an actual n-qubit output state (p) over cap (out) obtained from the noisy intermediate-scale quantum computation and the ideal output state (i.e., the target state) |psi(t). Although the direct fidelity estimation method requires O(2(n)) copies of (p) over cap (out) on average, our method requires only O(D(3)2(12D)) copies even in the worst case, where D is the denseness of |psi(t). For logarithmic-depth quantum circuits on a sparse chip, D is at most O(log n), and thus O(D(3)2(12D)) is a polynomial in n. By using the IBM Manila 5-qubit chip, we also perform a proof-of-principle experiment to observe the practical performance of our method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum computation capability verification protocol for noisy intermediate-scale quantum devices with the dihedral coset problem
    Lin, Ruge
    Wen, Weiqiang
    [J]. PHYSICAL REVIEW A, 2022, 106 (01)
  • [2] Noisy intermediate-scale quantum algorithms
    Bharti, Kishor
    Cervera-Lierta, Alba
    Kyaw, Thi Ha
    Haug, Tobias
    Alperin-Lea, Sumner
    Anand, Abhinav
    Degroote, Matthias
    Heimonen, Hermanni
    Kottmann, Jakob S.
    Menke, Tim
    Mok, Wai-Keong
    Sim, Sukin
    Kwek, Leong-Chuan
    Aspuru-Guzik, Alan
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
  • [3] Noisy intermediate-scale quantum computers
    Cheng, Bin
    Deng, Xiu-Hao
    Gu, Xiu
    He, Yu
    Hu, Guangchong
    Huang, Peihao
    Li, Jun
    Lin, Ben-Chuan
    Lu, Dawei
    Lu, Yao
    Qiu, Chudan
    Wang, Hui
    Xin, Tao
    Yu, Shi
    Yung, Man-Hong
    Zeng, Junkai
    Zhang, Song
    Zhong, Youpeng
    Peng, Xinhua
    Nori, Franco
    Yu, Dapeng
    [J]. FRONTIERS OF PHYSICS, 2023, 18 (02)
  • [4] Quantum solvability of noisy linear problems by divide-and-conquer strategy
    Song, Wooyeong
    Lim, Youngrong
    Jeong, Kabgyun
    Ji, Yun-Seong
    Lee, Jinhyoung
    Kim, Jaewan
    Kim, M. S.
    Bang, Jeongho
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)
  • [5] Quantum search on noisy intermediate-scale quantum devices
    Zhang, K.
    Yu, K.
    Korepin, V.
    [J]. EPL, 2022, 140 (01)
  • [6] Quantum Metrology in the Noisy Intermediate-Scale Quantum Era
    Jiao, Lin
    Wu, Wei
    Bai, Si-Yuan
    An, Jun-Hong
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2023,
  • [7] Parallel quantum chemistry on noisy intermediate-scale quantum computers
    Schade, Robert
    Bauer, Carsten
    Tamoev, Konstantin
    Mazur, Lukas
    Plessl, Christian
    Kuehne, Thomas D.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [8] Noisy intermediate-scale quantum algorithm for semidefinite programming
    Bharti, Kishor
    Haug, Tobias
    Vedral, Vlatko
    Kwek, Leong-Chuan
    [J]. PHYSICAL REVIEW A, 2022, 105 (05)
  • [9] Continuous Monitoring for Noisy Intermediate-Scale Quantum Processors
    Zolotarev, Y. F.
    Luchnikov, I. A.
    Lopez-Saldivar, J. A.
    Fedorov, A. K.
    Kiktenko, E. O.
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (01)
  • [10] Fisher Information in Noisy Intermediate-Scale Quantum Applications
    Meyer, Johannes Jakob
    [J]. QUANTUM, 2021, 5