Path Algebras of Quivers and Representations of Locally Finite Lie Algebras

被引:2
|
作者
Hennig, Johanna M. [1 ]
Sierra, Susan J. [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
CATEGORY; MODULES; LIMITS;
D O I
10.1093/imrn/rnw156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the (noncommutative) geometry of locally simple representations of the diagonal locally finite Lie algebras sl(n(infinity)), o(n(infinity)), and sp(n(infinity)). Let g(infinity) be one of these Lie algebras, and let I subset of U(g(infinity)) be the non-zero annihilator of a locally simple g(infinity)-module. We show that for each such I, there is a quiver Q so that locally simple g(infinity)-modules with annihilator I are parameterized by "points" in the "noncommutative space" corresponding to the path algebra of Q. Methods of noncommutative algebraic geometry are key to this correspondence. We classify the quivers that arise and relate them to characters of symmetric groups.
引用
收藏
页码:6036 / 6084
页数:49
相关论文
共 50 条