Quantum teleportation and quantum dense coding in a finite-dimensional Hilbert space

被引:4
|
作者
Ban, M [1 ]
机构
[1] Hitachi Ltd, Adv Res Lab, Tokyo 1858601, Japan
关键词
quantum communication; irreducible unitary representation; quantum measurement; quantum teleportation; quantum dense coding;
D O I
10.1023/A:1023333820295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Irreducible unitary representations of finite group and compact group describe quantum-state transformation (quantum coding) and quantum measurement (quantum decoding). The quantum teleportation and the quantum dense coding in a finite-dimensional Hilbert space are formulated in terms of an irreducible unitary representation of group. The description based on the group representation makes clear the similarity and difference between the quantum teleportation and the quantum dense coding.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Quantum Teleportation and Quantum Dense Coding in a Finite-Dimensional Hilbert Space
    M. Ban
    [J]. International Journal of Theoretical Physics, 2003, 42 : 1 - 13
  • [2] Quantum mechanics in finite-dimensional Hilbert space
    de la Torre, AC
    Goyeneche, D
    [J]. AMERICAN JOURNAL OF PHYSICS, 2003, 71 (01) : 49 - 54
  • [3] The Hilbert space of quantum gravity is locally finite-dimensional
    Bao, Ning
    Carroll, Sean M.
    Singh, Ashmeet
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (12):
  • [4] Quantum phase for an arbitrary system with finite-dimensional Hilbert space
    Arsenovic, Dusan
    Buric, Nikola
    Davidovic, Dragomir
    Prvanovic, Slobodan
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):
  • [5] Teleportation of general finite-dimensional quantum systems
    Albeverio, S
    Fei, SM
    [J]. PHYSICS LETTERS A, 2000, 276 (1-4) : 8 - 11
  • [6] Frame representation of quantum systems with finite-dimensional Hilbert space
    Cotfas, Nicolae
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [7] Comment on "Quantum phase for an arbitrary system with finite-dimensional Hilbert space"
    Hall, Michael J. W.
    Pegg, David T.
    [J]. PHYSICAL REVIEW A, 2012, 86 (05):
  • [8] Quantum coding with systems with finite Hilbert space
    Vourdas, A
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 613 - 616
  • [9] Quantum cost of dense coding and teleportation
    Qiu, Xinyu
    Chen, Lin
    [J]. PHYSICAL REVIEW A, 2022, 105 (06)
  • [10] Towards space from Hilbert space: finding lattice structure in finite-dimensional quantum systems
    Jason Pollack
    Ashmeet Singh
    [J]. Quantum Studies: Mathematics and Foundations, 2019, 6 : 181 - 200