Widths and average widths of Sobolev classes

被引:3
|
作者
Liu, YP [1 ]
Xu, GQ [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
multivariate function; Sobolev class; width; average width;
D O I
10.1016/S0252-9602(17)30221-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the problem of the Kolmogorov n-width, the linear n-width, the Gel'fand n-width and the Bernstein n-width of Sobolev classes of the periodic multivariate functions in the space L-p(T-d) and the average Bernstein sigma-width, average Kolmogorov sigma-widths, the average linear sigma-widths of Sobolev classes of the multivariate functions in the space L-p(R-d), where p = (p(i),...,p(d)), 1 less than or equal to p(j) < infinity, j = 1, 2,...,d, or p(j) = infinity, j = 1, 2,...,d. Their weak asymptotic behaviors are established for the corresponding quantities.
引用
收藏
页码:178 / 184
页数:7
相关论文
共 50 条
  • [1] WIDTHS AND AVERAGE WIDTHS OF SOBOLEV CLASSES
    刘永平
    许贵桥
    [J]. Acta Mathematica Scientia, 2003, (02) : 178 - 184
  • [2] N–Widths and Average Widths of Besov Classes in Sobolev Spaces
    Gui Qiao Xu* **
    Yong Sheng Sun*
    Yong Ping Liu* **
    [J]. Acta Mathematica Sinica, 2006, 22 : 1667 - 1678
  • [3] N-Widths and Average Widths of Besov Classes in Sobolev Spaces
    Gui Qiao XU~(1)2))School of Mathematical Sciences
    [J]. Acta Mathematica Sinica,English Series, 2006, 22 (06) : 1667 - 1678
  • [4] N-widths and average widths of Besov classes in Sobolev spaces
    Xu, Gui Qiao
    Sun, Yong Sheng
    Liu, Yong Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) : 1667 - 1678
  • [5] AVERAGE WIDTHS OF SOBOLEV CLASSES ON R(N)
    MAGARILILYAEV, GG
    [J]. JOURNAL OF APPROXIMATION THEORY, 1994, 76 (01) : 65 - 76
  • [6] AVERAGE ONESIDED WIDTHS OF SOBOLEV AND BESOV CLASSES
    杨柱元
    杨宗文
    刘永平
    [J]. Acta Mathematica Scientia, 2010, 30 (01) : 148 - 160
  • [7] AVERAGE ONESIDED WIDTHS OF SOBOLEV AND BESOV CLASSES
    Yang Zhuyuan
    Yang Zongwen
    Liu Yongping
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) : 148 - 160
  • [8] The Average Widths of Sobolev–Wiener Classes and Besov–Wiener Classes
    Gui Qiao Xu
    Yong Ping Liu1)
    [J]. Acta Mathematica Sinica, 2004, 20 : 81 - 92
  • [9] On the widths of Sobolev classes
    Huang, Hongwei
    Wang, Kunyang
    [J]. JOURNAL OF COMPLEXITY, 2011, 27 (02) : 201 - 220
  • [10] Gel’fand widths of Sobolev classes of functionsin the average setting
    Yuqi Liu
    Huan Li
    Xuehua Li
    [J]. Annals of Functional Analysis, 2023, 14