Explicit enumeration of triangulations with multiple boundaries

被引:0
|
作者
Krikun, Maxim [1 ]
机构
[1] Univ Henri Poincare, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2007年 / 14卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We enumerate rooted traingulations of a sphere with multiple holes by the total number of edges and the length of each boundary component. The proof relies on a combinatorial identity due to W.T. Tutte.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] THE ENUMERATION OF AKEMPIC TRIANGULATIONS
    MOHAR, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (01) : 14 - 23
  • [2] Parallel Enumeration of Triangulations
    Jordan, Charles
    Joswig, Michael
    Kastner, Lars
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [3] Ranked Enumeration of Minimal Triangulations
    Ravid, Noam
    Medini, Dori
    Kimelfeld, Benny
    [J]. PROCEEDINGS OF THE 38TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '19), 2019, : 74 - 88
  • [4] An efficient algorithm for enumeration of triangulations
    Bespamyatnikh, S
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (03): : 271 - 279
  • [5] Enumeration of regular triangulations with computational results
    Masada, T
    Imai, K
    Imai, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 187 - 190
  • [6] GEOMETRIC CLASSIFICATION OF TRIANGULATIONS AND THEIR ENUMERATION IN A CONVEX POLYGON
    SENGUPTA, S
    MUKHOPADHYAYA, K
    BHATTACHARYA, BB
    SINHA, BP
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (07) : 99 - 115
  • [7] Explicit angle structures for veering triangulations
    Futer, David
    Gueritaud, Francois
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 205 - 235
  • [8] Enumeration of rooted planar triangulations with respect to diagonal flips
    Gao, ZC
    Wang, JY
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (02) : 276 - 296
  • [9] Finding small triangulations of polytope boundaries is hard
    Richter-Gebert, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) : 503 - 517
  • [10] Finding Small Triangulations of Polytope Boundaries Is Hard
    J. Richter-Gebert
    [J]. Discrete & Computational Geometry, 2000, 24 : 503 - 518