3D asymmetric carbozole hole transporting materials for perovskite solar cells

被引:11
|
作者
Sheibani, Esmaeil [1 ]
Heydari, Mahsa [2 ]
Ahangar, Hosein [1 ]
Mohammadi, Hajar [1 ]
Fard, Hossein Taherian [2 ]
Taghavini, Nima [2 ,3 ]
Samadpour, Mahmoud [4 ]
Tajabadi, Fariba [5 ]
机构
[1] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran
[2] Sharif Univ Technol, Dept Phys, Nanoparticles & Coating Lab, Tehran 14588, Iran
[3] Sharif Univ Technol, Inst Nano Sci & Nanotechnol, Tehran 14588, Iran
[4] KN Toosi Univ Technol, Dept Phys, Tehran, Iran
[5] Mat & Energy Res Ctr, Dept Nanotechnol & Adv Mat, Karaj 3177983634, Iran
基金
美国国家科学基金会;
关键词
Carbazole; Hole-transporting materials; Perovskite solar cells; 3D non-fused carbazole structure; LOW-COST; HIGHLY EFFICIENT; STABILITY; DERIVATIVES;
D O I
10.1016/j.solener.2019.07.091
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbazole compounds are p-type hole-transporting materials (HTMs) useful for perovskite solar cells (PSCs). In this work, we developed a new class of carbazol based HTMs; non-fused 3-D asymmetric structures (S14 and S12) as HTM of PSCs. To the best of our knowledge, there is no report on non-fused HTMs with a high glass transition temperature (T-g = 165 degrees C), which reduces crystallization and suppresses grain boundaries in glassy film, resulting in long-term durability. Experimental results show that tuning the carbazole moiety in S14 structure has a constructive influence on geometrical alignment, hole mobility, hydrophobicity, stability as well as efficiency. The resultant power conversion efficiency (PCE) of devices were 15.31% and 11.85% for S14 and S12, respectively. Cell efficiency decreases during the first day for all devices. But after this time, the cell efficiency of the device fabricated with S14 remains constant until 1000 h at atmospheric condition without encapsulation while for devices fabricated by S12 and Spiro-OMeTAD the cell efficiency decreases to 75% and 69%.
引用
收藏
页码:404 / 411
页数:8
相关论文
共 50 条
  • [1] Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells
    Chen, Jian
    Xia, Jianxing
    Yu, Hui-Juan
    Zhong, Jun -Xing
    Wu, Xiao-Kun
    Qin, Yuan-Shou
    Jia, Chunyang
    She, Zhigang
    Kuang, Dai-Bin
    Shao, Guang
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (15) : 5431 - 5441
  • [2] 3D Conjugated Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells and Modules
    Zhang, Xianfu
    Liu, Xuepeng
    Ding, Yunxuan
    Ding, Bin
    Shi, Pengju
    Syzgantseva, Olga A.
    Syzgantseva, Maria A.
    Fei, Zhaofu
    Chen, Jianlin
    Rahim, Ghadari
    Han, Mingyuan
    Zhang, Kai
    Zhou, Ying
    Brooks, Keith G.
    Wang, Rui
    Sun, Licheng
    Dyson, Paul J.
    Dai, Songyuan
    Nazeeruddin, Mohammad Kahaj Khaja
    Ding, Yong
    [J]. ADVANCED MATERIALS, 2024, 36 (28)
  • [3] Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Fan
    Li, Qianqian
    Li, Zhen
    [J]. ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 7 (11) : 2182 - 2200
  • [4] 3D hole-transporting materials based on coplanar quinolizino acridine for highly efficient perovskite solar cells
    Zhang, Mingdao
    Wang, Gang
    Zhao, Danxia
    Huang, Chengyan
    Cao, Hui
    Chen, Mindong
    [J]. CHEMICAL SCIENCE, 2017, 8 (11) : 7807 - 7814
  • [5] Asymmetric Triphenylethylene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells
    Petrulevicius, Julius
    Yang, Yi
    Liu, Cheng
    Steponaitis, Matas
    Kamarauskas, Egidijus
    Daskeviciene, Maryte
    Bati, Abdulaziz S. R.
    Malinauskas, Tadas
    Jankauskas, Vygintas
    Rakstys, Kasparas
    Kanatzidis, Mercouri G.
    Sargent, Edward H.
    Getautis, Vytautas
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) : 7310 - 7316
  • [6] Progress in hole-transporting materials for perovskite solar cells
    Xichuan Yang
    Haoxin Wang
    Bin Cai
    Ze Yu
    Licheng Sun
    [J]. Journal of Energy Chemistry, 2018, 27 (03) - 672
  • [7] Progress in hole-transporting materials for perovskite solar cells
    Xichuan Yang
    Haoxin Wang
    Bin Cai
    Ze Yu
    Licheng Sun
    [J]. Journal of Energy Chemistry, 2018, (03) : 650 - 672
  • [8] Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells
    Rajeswari, Ramireddy
    Mrinalini, Madoori
    Prasanthkumar, Seelam
    Giribabu, Lingamallu
    [J]. CHEMICAL RECORD, 2017, 17 (07): : 681 - 699
  • [9] Progress in hole-transporting materials for perovskite solar cells
    Yang, Xichuan
    Wang, Haoxin
    Cai, Bin
    Yu, Ze
    Sun, Licheng
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (03) : 650 - 672
  • [10] Inorganic Hole-Transporting Materials for Perovskite Solar Cells
    Yu, Ze
    Sun, Licheng
    [J]. SMALL METHODS, 2018, 2 (02):