Growth, entropy and commutativity of algebras satisfying prescribed relations

被引:11
|
作者
Smoktunowicz, Agata [1 ]
机构
[1] Univ Edinburgh, Sch Math, Maxwell Inst Math Sci, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
SELECTA MATHEMATICA-NEW SERIES | 2014年 / 20卷 / 04期
基金
欧洲研究理事会;
关键词
Golod-Shaferevich algebras; Growth of algebras and the Gelfand-Kirillov dimension; GELFAND-KIRILLOV DIMENSION; POWER-SERIES RINGS; BEZOUT;
D O I
10.1007/s00029-014-0154-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1964, Golod and Shafarevich found that, provided that the number of relations of each degree satisfies some bounds, there exist infinitely dimensional algebras satisfying the relations. These algebras are called Golod-Shafarevich algebras. This paper provides bounds for the growth function on images of Golod-Shafarevich algebras based upon the number of defining relations. This extends results from Smoktunowicz and Bartholdi (Q J Math. ). Lower bounds of growth for constructed algebras are also obtained, permitting the construction of algebras with various growth functions of various entropies. In particular, the paper answers a question by Drensky (A private communication, 2013) by constructing algebras with subexponential growth satisfying given relations, under mild assumption on the number of generating relations of each degree. Examples of nil algebras with neither polynomial nor exponential growth over uncountable fields are also constructed, answering a question by Zelmanov (2013). Recently, several open questions concerning the commutativity of algebras satisfying a prescribed number of defining relations have arisen from the study of noncommutative singularities. Additionally, this paper solves one such question, posed by Donovan and Wemyss (Noncommutative deformations and flops [math.AG]).
引用
收藏
页码:1197 / 1212
页数:16
相关论文
共 50 条