Robust speech feature extraction by growth transformation in reproducing kernel Hilbert space

被引:4
|
作者
Chakrabartty, Shantanu [1 ]
Deng, Yunbin
Cauwenberghs, Gert
机构
[1] Michigan State Univ, Dept Elect & Comp Sci, E Lansing, MI 48824 USA
[2] LLC, Lumen Vox, San Diego, CA 92123 USA
[3] Univ Calif San Diego, Div Biol Sci, Neurobiol Sect, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
feature extraction; growth transforms; noise robustness; nonlinear signal processing; reproducing kernel Hilbert space; speaker verification;
D O I
10.1109/TASL.2007.899285
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The performance of speech recognition systems depends on consistent quality of the speech features across variable environmental conditions encountered during training and evaluation. This paper presents a kernel-based nonlinear predictive coding procedure that yields speech features which are robust to nonstationary noise contaminating the speech signal. Features maximally insensitive to additive noise are obtained by growth transformation of regression functions that span a reproducing kernel Hilbert space (RKHS). The features are normalized by construction and extract information pertaining to higher-order statistical correlations in the speech signal. Experiments with the TI-DIGIT database demonstrate consistent robustness to noise of varying statistics, yielding significant improvements in digit recognition accuracy over identical models trained using Mel-scale cepstral features and evaluated at noise levels between 0 and 30-dB signal-to-noise ratio.
引用
收藏
页码:1842 / 1849
页数:8
相关论文
共 50 条
  • [1] Robust speech feature extraction by growth transformation in Reproducing Kernel Hilbert Space
    Chakrabartty, S
    Deng, YB
    Cauwenberghs, G
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING, 2004, : 133 - 136
  • [2] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    [J]. 2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [3] Regularization in a reproducing kernel Hilbert space for robust voice activity detection
    Lu, Xugang
    Unoki, Masashi
    Isotani, Ryosuke
    Kawai, Hisashi
    Nakamura, Satoshi
    [J]. 2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 585 - 588
  • [4] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [5] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [6] Regularization in a functional reproducing kernel Hilbert space
    Wang, Rui
    Xu, Yuesheng
    [J]. JOURNAL OF COMPLEXITY, 2021, 66
  • [7] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [8] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [9] Ensemble forecasts in reproducing kernel Hilbert space family
    Dufee, Benjamin
    Hug, Berenger
    Memin, Etienne
    Tissot, Gilles
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 459
  • [10] Local Subspace Classifier in Reproducing Kernel Hilbert Space
    Zou, DF
    [J]. ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS, 2000, 1948 : 434 - 441