Optimal realizations of simplified Toffoli gates

被引:0
|
作者
Song, G [1 ]
Klappenecker, A
机构
[1] Iowa State Univ, LH Baker Ctr Bioinformat & Biol Stat, Ames, IA 50011 USA
[2] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
关键词
quantum circuits; lower bounds; simplified Toffoli gate;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A simplified Toffoli gate coincides with the Toffoli gate except that the result is allowed to differ on one computational basis state by a phase factor. We prove that the simplified Toffoli gate implementation by Margolus is optimal, in the sense that it attains a lower bound of three controlled-not gates, and subject to that, a sharp lower bound of four single-qubit gates. We also discuss optimal implementations of other simplified Toffoli gates, and explain why the phase factor -1 invariably occurs in such implementations.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 50 条
  • [1] Elementary Quantum Gate Realizations for Multiple-Control Toffoli Gates
    Miller, D. Michael
    Wille, Robert
    Sasanian, Z.
    2011 41ST IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2011, : 288 - 293
  • [2] Lower Cost Quantum Gate Realizations of Multiple-control Toffoli Gates
    Miller, D. Michael
    2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 308 - 313
  • [3] Optimal realizations of controlled unitary gates
    Song, G
    Klappenecker, A
    QUANTUM INFORMATION & COMPUTATION, 2003, 3 (02) : 139 - 156
  • [4] Multiqubit Toffoli Gates and Optimal Geometry with Rydberg Atoms
    Yu, Dongmin
    Wang, Han
    Liu, Jin-Ming
    Su, Shi-Lei
    Qian, Jing
    Zhang, Weiping
    PHYSICAL REVIEW APPLIED, 2022, 18 (03)
  • [5] Efficient Toffoli gates using qudits
    Ralph, T. C.
    Resch, K. J.
    Gilchrist, A.
    PHYSICAL REVIEW A, 2007, 75 (02):
  • [6] On THE CNOT-COST OF TOFFOLI GATES
    Shende, Vivek V.
    Markov, Igor L.
    QUANTUM INFORMATION & COMPUTATION, 2009, 9 (5-6) : 461 - 486
  • [7] On the cnot-cost of toffoli gates
    Princeton University, Princeton, NJ 08544, United States
    不详
    Quantum Inf. Comput., 2009, 5-6 (461-486):
  • [8] OR-Toffoli and OR-Peres Reversible Gates
    Moraga, Claudio
    REVERSIBLE COMPUTATION (RC 2021), 2021, 12805 : 266 - 273
  • [9] Multifractality in fidelity sequences of optimized Toffoli gates
    Moqadam, Jalil Khatibi
    Welter, Guilherme S.
    Esquef, Paulo A. A.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (11) : 4501 - 4520
  • [10] Multifractality in fidelity sequences of optimized Toffoli gates
    Jalil Khatibi Moqadam
    Guilherme S. Welter
    Paulo A. A. Esquef
    Quantum Information Processing, 2016, 15 : 4501 - 4520