Well-quasi-ordering and the Hausdorff quasi-uniformity

被引:11
|
作者
Kunzi, HPA
Romaguera, S
机构
[1] Univ Bern, Dept Math, CH-3012 Bern, Switzerland
[2] Univ Politecn Valencia, ESI Caminos Canales & Puertos, E-46071 Valencia, Spain
关键词
precompact; Hausdorff quasi-uniformity; Bourbaki quasi-uniformity; compact; well-quasi-ordering; better-quasi-ordering; hereditarily pre-Lindelof;
D O I
10.1016/S0166-8641(97)00151-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X,U) be a quasi-uniform space and U* its Hausdorff quasi-uniformity defined on the collection P-0(X) of all nonempty subsets of X. We show that (P-0(X),U*) is compact if and only if (X,U) is compact and (X-m,U-1\X-m) is hereditarily precompact where X-m = {y is an element of X: y is minimal in the (specialization) quasi-order of (X,U)}. Furthermore (P-0(X),U*) is shown to be hereditarily precompact if arld only if for any U is an element of U and any a:[w](2) --> X, there are k, j, l is an element of w such that k > j > l and a(kj) is an element of U(a(jl)). Relationships between the theory of hereditary precompactness of quasi-uniform spaces and the theory of well-quasi-orderings are discussed. The paper ends with some remarks on hereditarypre-Lindelofness. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [1] The bicompletion of the Hausdorff quasi-uniformity
    Kunzi, Hans-Peter A.
    Romaguera, S.
    Sanchez Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (10) : 1850 - 1862
  • [2] WELL-QUASI-ORDERING SEQUENCES
    LAVER, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 841 - &
  • [3] SUBGRAPHS AND WELL-QUASI-ORDERING
    DING, GL
    JOURNAL OF GRAPH THEORY, 1992, 16 (05) : 489 - 502
  • [4] The relationship between the Vietoris topology and the Hausdorff quasi-uniformity
    Rodríguez-López, J
    Romaguera, S
    TOPOLOGY AND ITS APPLICATIONS, 2002, 124 (03) : 451 - 464
  • [5] Induced minors and well-quasi-ordering
    Blasiok, Jaroslaw
    Kaminski, Marcin
    Raymond, Jean-Florent
    Trunck, Theophile
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 110 - 142
  • [6] ON WELL-QUASI-ORDERING FINITE SEQUENCES
    BOLLERHOFF, U
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (03) : 227 - 230
  • [7] ON WELL-QUASI-ORDERING TRANSFINITE SEQUENCES
    NASHWILLIAMS, CS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 : 33 - +
  • [8] Well-quasi-ordering Aronszajn lines
    Martinez-Ranero, Carlos
    FUNDAMENTA MATHEMATICAE, 2011, 213 (03) : 197 - 211
  • [9] ON WELL-QUASI-ORDERING INFINITE TREES
    NASHWILL.CS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 : 697 - &
  • [10] ON WELL-QUASI-ORDERING FINITE TREES
    STMASHWI.CJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1963, 59 (04): : 833 - &