We characterize the tripos-to-topos construction of Hyland, Johnstone and Pitts as a biadjunction in a 2-category enriched category of equipment-like structures. These abstract concepts are necessary to handle the presence of oplax constructs - the construction is only oplax functorial on a certain class of tripos morphisms. A by-product of our analysis is the decomposition of the tripos-to-topos construction into two steps, the intermediate step being a generalization of quasitoposes. (C) 2014 Elsevier B.V. All rights reserved.
机构:
CUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USACUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USA
Funk, Jonathon
Hofstra, Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, CanadaCUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USA
机构:
Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, ItalyUniv Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
机构:
CUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USACUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USA
Funk, Jonathon
Hofstra, Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math & Stat, 585 King Edward Ave, Ottawa, ON K1N 6N5, CanadaCUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USA