Deciding Acceptance in Incomplete Argumentation Frameworks

被引:0
|
作者
Niskanen, Andreas [1 ]
Neugebauer, Daniel [2 ]
Jaervisalo, Matti [1 ]
Rothe, Joerg [2 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Helsinki Insitute Informat Technol HIIT, Helsinki, Finland
[2] Heinrich Heine Univ Dusseldorf, Inst Informat, Dusseldorf, Germany
基金
芬兰科学院;
关键词
EQUIVALENCE; DYNAMICS; ATTACK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expressing incomplete knowledge in abstract argumentation frameworks (AFs) through incomplete AFs has recently received noticeable attention. However, algorithmic aspects of deciding acceptance in incomplete AFs are still underdeveloped. We address this current shortcoming by developing algorithms for NP-hard and coNP-hard variants of acceptance problems over incomplete AFs via harnessing Boolean satisfiability (SAT) solvers. Focusing on nonempty conflict-free or admissible sets and on stable extensions, we also provide new complexity results for a refined variant of skeptical acceptance in incomplete AFs, ranging from polynomial-time computability to hardness for the second level of the polynomial hierarchy. Furthermore, central to the proposed SAT-based counterexample-guided abstraction refinement approach for the second-level problem variants, we establish conditions for redundant atomic changes to incomplete AFs from the perspective of preserving extensions. We show empirically that the resulting SAT-based approach for incomplete AFs scales at least as well as existing SAT-based approaches to deciding acceptance in AFs.
引用
收藏
页码:2942 / 2949
页数:8
相关论文
共 50 条
  • [1] Acceptance in incomplete argumentation frameworks
    Baumeister, Dorothea
    Jarvisalo, Matti
    Neugebauer, Daniel
    Niskanen, Andreas
    Rothe, Joerg
    [J]. ARTIFICIAL INTELLIGENCE, 2021, 295
  • [2] Credulous and Skeptical Acceptance in Incomplete Argumentation Frameworks
    Baumeister, Dorothea
    Neugebauer, Daniel
    Rothe, Joerg
    [J]. COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 181 - 192
  • [3] Explainable acceptance in probabilistic and incomplete abstract argumentation frameworks
    Alfano, Gianvincenzo
    Calautti, Marco
    Greco, Sergio
    Parisi, Francesco
    Trubitsyna, Irina
    [J]. ARTIFICIAL INTELLIGENCE, 2023, 323
  • [4] On Deciding Admissibility in Abstract Argumentation Frameworks
    Nofal, Samer
    Atkinson, Katie
    Dunne, Paul E.
    [J]. KEOD: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 2: KEOD, 2019, : 67 - 75
  • [5] Constrained Incomplete Argumentation Frameworks
    Mailly, Jean-Guy
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2021, 2021, 12897 : 103 - 116
  • [6] Verification in incomplete argumentation frameworks
    Baumeister, Dorothea
    Neugebauer, Daniel
    Rothe, Joerg
    Schadrack, Hilmar
    [J]. ARTIFICIAL INTELLIGENCE, 2018, 264 : 1 - 26
  • [7] On the acceptance of loops in argumentation frameworks
    Arieli, Ofer
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2016, 26 (04) : 1203 - 1234
  • [8] Stability and Relevance in Incomplete Argumentation Frameworks
    Odekerken, Daphne
    Borg, AnneMarie
    Bex, Floris
    [J]. COMPUTATIONAL MODELS OF ARGUMENT, COMMA 2022, 2022, 353 : 272 - 283
  • [9] Complexity of Verification in Incomplete Argumentation Frameworks
    Baumeister, Dorothea
    Neugebauer, Daniel
    Rothe, Joerg
    Schadrack, Hilmar
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1753 - 1760
  • [10] Incomplete Argumentation Frameworks: Properties and Complexity
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    Trubitsyna, Irina
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5451 - 5460