Analysis of covariance under variance heteroscedasticity in general factorial designs

被引:1
|
作者
Konietschke, Frank [1 ,2 ,3 ,4 ,5 ]
Cao, Cong [6 ]
Gunawardana, Asanka [1 ,2 ,3 ,4 ,5 ]
Zimmermann, Georg [7 ,8 ,9 ]
机构
[1] Charite Univ Med Berlin, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Berlin Inst Hlth, Inst Biometry & Clin Epidemiol, Charitepl 1, D-10117 Berlin, Germany
[5] Berlin Inst Hlth BIH, Berlin, Germany
[6] PPD Dev, Hamilton, NJ USA
[7] Paracelsus Med Univ, IDA Lab Salzburg, Team Biostat & Big Med Data, Salzburg, Austria
[8] Paris Lodron Univ Salzburg, Dept Math, Salzburg, Austria
[9] Paracelsus Med Univ, Christian Doppler Univ Hosp, Dept Neurol, Salzburg, Austria
关键词
ANCOVA; ANOVA-type statistic; Box-type approximation; experimental designs; BOOTSTRAP;
D O I
10.1002/sim.9092
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adjusting for baseline values and covariates is a recurrent statistical problem in medical science. In particular, variance heteroscedasticity is non-negligible in experimental designs and ignoring it might result in false conclusions. Approximate inference methods are developed to test null hypotheses formulated in terms of adjusted treatment effects and regression parameters in general analysis of covariance designs with arbitrary numbers of factors. Variance homoscedasticity is not assumed. The distributions of the test statistics are approximated using Box-type approximation methods. Extensive simulation studies show that the procedures are particularly suitable when sample sizes are rather small. A real data set illustrates the application of the methods.
引用
收藏
页码:4732 / 4749
页数:18
相关论文
共 50 条