On γ-convergence of vector-valued mappings

被引:0
|
作者
Manzo, Rosanna [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, I-84084 Fisciano, SA, Italy
关键词
Vector-valued mapping; Partial ordered spaces; Gamma-convergence; Compactness result;
D O I
10.1007/s11117-013-0272-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a new concept of limit for sequences of vector-valued mappings in normed spaces. We generalize the well-known concept of -convergence to the case of vector-valued mappings and specify notion of -convergence similar to the one previously introduced in Dovzhenko et al. (Far East J Appl Math 60:1-39, 2011). In particular, we show that -convergence concept introduced in this paper possesses a compactness property whereas this property was failed in Dovzhenko et al. (Far East J Appl Math 60:1-39, 2011). In spite of the fact this paper contains another definition of -limits for vector-valued mapping we prove that the -lower limit in the new version coincides with the previous one, whereas the -upper limit leads to a different mapping in general. Using the link between the lower semicontinuity property of vector-valued mappings and the topological properties of their coepigraphs, we establish the connection between -convergence of the sequences of mappings and -convergence of their epigraphs and coepigraphs in the sense of Kuratowski and study the main topological properties of -limits. The main results are illustrated by numerous examples.
引用
收藏
页码:709 / 731
页数:23
相关论文
共 50 条
  • [1] Semicontinuity of vector-valued mappings
    Mansour, M. Ait
    Malivert, C.
    Thera, M.
    [J]. OPTIMIZATION, 2007, 56 (1-2) : 241 - 252
  • [2] A minimax inequality for vector-valued mappings
    Li, ZF
    Wang, SY
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (05) : 31 - 35
  • [3] POLARITY OF CONVEX VECTOR-VALUED MAPPINGS
    PENOT, JP
    THERA, M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (07): : 419 - 422
  • [4] ON CONVERGENCE OF VECTOR-VALUED PRAMARTS AND SUBPRAMARTS
    FRANGOS, NE
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (02): : 260 - 270
  • [5] CONVERGENCE OF VECTOR-VALUED ASYMPTOTIC MARTINGALES
    CHACON, RV
    SUCHESTON, L
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 33 (01): : 55 - 59
  • [6] UNCONDITIONAL CONVERGENCE AND VECTOR-VALUED MEASURES
    TWEDDLE, I
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (OCT): : 603 - &
  • [7] GENERALIZED INVEXITY FOR NONSMOOTH VECTOR-VALUED MAPPINGS
    REILAND, TW
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (11-12) : 1191 - 1202
  • [8] A type of minimax inequality for vector-valued mappings
    Li, ZF
    Wang, SY
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) : 68 - 80
  • [9] On the Nevanlinna's Theory for Vector-Valued Mappings
    Xuan, Zu-Xing
    Wu, Nan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2010, : 1 - 15
  • [10] Lower Semicontinuous Regularization for Vector-Valued Mappings
    M. Ait Mansour
    A. Metrane
    M. Théra
    [J]. Journal of Global Optimization, 2006, 35 : 283 - 309