Killing of adherent oral microbes by a non-thermal atmospheric plasma jet

被引:154
|
作者
Rupf, Stefan [1 ]
Lehmann, Antje [2 ]
Hannig, Matthias [1 ]
Schaefer, Barbara [1 ]
Schubert, Andreas [3 ,4 ]
Feldmann, Uwe [4 ]
Schindler, Axel [2 ]
机构
[1] Univ Saarland, Clin Operat Dent Periodontol & Prevent Dent, D-6650 Homburg, Germany
[2] Leibniz Inst Surface Modificat, Leipzig, Germany
[3] Fraunhofer Inst, Vasc Biol Grp, Leipzig, Germany
[4] Univ Saarland, Inst Med Biometry Epidemiol & Med Informat, D-6650 Homburg, Germany
关键词
STREPTOCOCCUS-MUTANS; PRESSURE; STERILIZATION; INACTIVATION; BACTERIA; GAS; ENDOSPORES; DISCHARGE; HELIUM; NEEDLE;
D O I
10.1099/jmm.0.013714-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Atmospheric plasma jets are being intensively studied with respect to potential applications in medicine. The aim of this in vitro study was to test a microwave-powered non-thermal atmospheric plasma jet for its antimicrobial efficacy against adherent oral micro-organ isms. Agar plates and dentin slices were inoculated with 6 log(10) c.f.u. cm(-2) of Lactobacillus casei, Streptococcus mutans and Candida albicans, with Escherichia coli as a control. Areas of 1 cm(2) on the agar plates or the complete dentin slices were irradiated with a helium plasma jet for 0.3, 0.6 or 0.9 s mm(-2), respectively. The agar plates were incubated at 37 degrees C, and dentin slices were vortexed in liquid media and suspensions were placed on agar plates. The killing efficacy of the plasma jet was assessed by counting the number of c.f.u. on the irradiated areas of the agar plates, as well as by determination of the number of c.f.u. recovered from dentin slices. A microbe-killing effect was found on the irradiated parts of the agar plates for L. casei, S. mutans, C. albicans and E coli. The plasma-jet treatment reduced the c.f.u. by 3-4 log(10) intervals on the dentin slices in comparison to recovery rates from untreated controls. The microbe-killing effect was correlated with increasing irradiation times. Thus, non-thermal atmospheric plasma jets could be used for the disinfection of dental surfaces.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [2] Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
    Liu Xiaohu
    Hong Feng
    Guo Ying
    Zhang Jing
    Shi Jianjun
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (05) : 439 - 442
  • [3] Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
    刘小虎
    洪枫
    郭颖
    张菁
    石建军
    Plasma Science and Technology, 2013, 15 (05) : 439 - 442
  • [4] Modeling of a Non-Thermal RF Plasma Jet at Atmospheric Pressure
    Sigeneger, Florian
    Schaefer, Jan
    Weltmann, Klaus-Dieter
    Foest, Ruediger
    Loffhagen, Detlef
    PLASMA PROCESSES AND POLYMERS, 2017, 14 (4-5)
  • [5] Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
    刘小虎
    洪枫
    郭颖
    张菁
    石建军
    Plasma Science and Technology, 2013, (05) : 439 - 442
  • [6] Characterization of the Operational Modes of a Non-thermal Atmospheric Pressure Plasma Jet
    Demetillo, Mary Angelique
    Lopez, Jose L.
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [7] The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast
    Kwon, Jae-Sung
    Kim, Yong Hee
    Choi, Eun Ha
    Kim, Kyoung-Nam
    CURRENT APPLIED PHYSICS, 2013, 13 : S42 - S47
  • [8] Synthesis of Copper Particles by Non-thermal Atmospheric Pressure Plasma Jet
    Lazea-Stoyanova, Andrada
    Vlad, Angela
    Vlaicu, Aurel Mihai
    Teodorescu, Valentin Serban
    Dinescu, Gheorghe
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (08) : 705 - 709
  • [9] DNA strand scission induced by a non-thermal atmospheric pressure plasma jet
    Ptasinska, Sylwia
    Bahnev, Blagovest
    Stypczynska, Agnieszka
    Bowden, Mark
    Mason, Nigel J.
    Braithwaite, Nicholas St. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (28) : 7779 - 7781
  • [10] On the Vacuum Ultraviolet Radiation of a Miniaturized Non-thermal Atmospheric Pressure Plasma Jet
    Foest, Ruediger
    Bindemann, Thomas
    Brandenburg, Ronny
    Kindel, Eckhard
    Lange, Hartmut
    Stieber, Manfred
    Weltmann, Klaus-Dieter
    PLASMA PROCESSES AND POLYMERS, 2007, 4 : S460 - S464