The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions
被引:52
|
作者:
论文数: 引用数:
h-index:
机构:
Demontis, F.
[1
]
Prinari, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy
Sezione Ist Nazl Fis Nucl, Lecce, ItalyUniv Cagliari, Dipartimento Matemat, I-09121 Cagliari, Italy
Prinari, B.
[2
,3
,4
]
van der Mee, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cagliari, Dipartimento Matemat, I-09121 Cagliari, ItalyUniv Cagliari, Dipartimento Matemat, I-09121 Cagliari, Italy
van der Mee, C.
[1
]
Vitale, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, ItalyUniv Cagliari, Dipartimento Matemat, I-09121 Cagliari, Italy
Vitale, F.
[3
]
机构:
[1] Univ Cagliari, Dipartimento Matemat, I-09121 Cagliari, Italy
[2] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
[3] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy
The inverse scattering transform (IST) as a tool to solve the initial-value problem for the focusing nonlinear Schrodinger (NLS) equation with non-zero boundary values q(l/r)(t) = A(l/r)e (2iA2l/r) (t) (vertical bar) (i theta l/r) as x -> -/+infinity is presented in the fully asymmetric case for both asymptotic amplitudes and phases, i. e., with A(l) not equal A(r) and theta(l) not equal theta(r). The direct problem is shown to be well-defined for NLS solutions q(x, t) such that (q(x, t)-q(l/r)(t) is an element of L-1,L-1(R--/+) with respect to x for all t >= 0, and the corresponding analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated both via (left and right) Marchenko integral equations, and as a Riemann-Hilbert problem on a single sheet of the scattering variables lambda(l/r) = root k(2) + A(l/r)(2), where k is the usual complex scattering parameter in the IST. The time evolution of the scattering coefficients is then derived, showing that, unlike the case of solutions with equal amplitudes as x -> +/-infinity, here both reflection and transmission coefficients have a nontrivial (although explicit) time dependence. The results presented in this paper will be instrumental for the investigation of the longtime asymptotic behavior of fairly general NLS solutions with nontrivial boundary conditions via the nonlinear steepest descent method on the Riemann-Hilbert problem, or via matched asymptotic expansions on the Marchenko integral equations. (C) 2014 AIP Publishing LLC.
机构:
SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USASUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
Biondini, Gino
Fagerstrom, Emily
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Buffalo, Dept Math, Buffalo, NY 14260 USASUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
Fagerstrom, Emily
Prinari, Barbara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, I-73100 Lecce, Italy
Sezione Ist Nazl Fis Nucl, I-73100 Lecce, ItalySUNY Buffalo, Dept Math, Buffalo, NY 14260 USA