Elevated effective dimension in tree-like nanomagnetic Cayley structures

被引:10
|
作者
Saccone, Michael [1 ,2 ]
Hofhuis, Kevin [3 ,4 ]
Bracher, David [5 ]
Kleibert, Armin [5 ]
van Dijken, Sebastiaan [2 ]
Farhan, Alan [2 ,4 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA
[2] Aalto Univ, Sch Sci, Dept Appl Phys, NanoSpin, POB 15100, FI-00076 Aalto, Finland
[3] Swiss Fed Inst Technol, Dept Mat, Lab Mesoscop Syst, CH-8093 Zurich, Switzerland
[4] Paul Scherrer Inst, Lab Multiscale Mat Expt, CH-5232 Villigen, Switzerland
[5] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会; 芬兰科学院;
关键词
SPIN-GLASS; MAGNETIC MONOPOLES; FRUSTRATION;
D O I
10.1039/c9nr07510k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using state-of-the-art electron-beam lithography, Ising-type nanomagnets may be defined onto nearly any two-dimensional pattern imaginable. The ability to directly observe magnetic configurations achieved in such artificial spin systems makes them a perfect playground for the realization of artificial spin glasses. However, no experimental realization of a finite-temperature artificial spin glass has been achieved so far. Here, we aim to get a significant step closer in achieving that goal by introducing an artificial spin system with random interactions and increased effective dimension: dipolar Cayley tree. Through synchrotron-based photoemission electron microscopy, we show that an improved balance of ferro- and antiferromagnetic ordering can be achieved in this type of system. This combined with an effective dimension as high as d = 2.72 suggests that future systems generated out of these building blocks can host finite temperature spin glass phases, allowing for real-time observation of glassy dynamics.
引用
收藏
页码:189 / 194
页数:6
相关论文
共 50 条
  • [1] Elevated effective dimension in tree-like nanomagnetic Cayley structures
    Saccone, Michael
    Hofhuis, Kevin
    Bracher, David
    Kleibert, Armin
    Van Dijken, Sebastiaan
    Farhan, Alan
    Saccone, Michael (msaccone@ucsc.edu), 1600, Royal Society of Chemistry (12): : 189 - 194
  • [2] Splicing on tree-like structures
    Sakakibara, Y
    Ferretti, C
    THEORETICAL COMPUTER SCIENCE, 1999, 210 (02) : 227 - 243
  • [3] Random walks on groups with a tree-like Cayley graph
    Mairesse, J
    Mathéus, F
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 445 - 460
  • [4] The Competing Interactions on a Cayley Tree-Like Lattice: Pentagonal Chandelier
    Uguz, S.
    Ganikhodjaev, N.
    Akin, H.
    Temir, S.
    ACTA PHYSICA POLONICA A, 2012, 121 (01) : 114 - 118
  • [5] Reciprocal Tree-Like Fractal Structures
    Sanchez-Sanchez, Jose
    Escrig Pallares, Felix
    Teresa Rodriguez-Leon, Maria
    NEXUS NETWORK JOURNAL, 2014, 16 (01) : 135 - 150
  • [6] Tungsten oxide tree-like structures
    Zhu, YQ
    Hu, WB
    Hsu, WK
    Terrones, M
    Grobert, N
    Hare, JP
    Kroto, HW
    Walton, DRM
    Terrones, H
    CHEMICAL PHYSICS LETTERS, 1999, 309 (5-6) : 327 - 334
  • [8] Reciprocal Tree-Like Fractal Structures
    José Sánchez-Sánchez
    Félix Escrig Pallarés
    Maria Teresa Rodríguez-León
    Nexus Network Journal, 2014, 16 : 135 - 150
  • [9] The monadic theory of tree-like structures
    Berwanger, D
    Blumensath, A
    AUTOMATA, LOGICS, AND INFINITE GAMES: A GUIDE TO CURRENT RESEARCH, 2002, 2500 : 285 - 301
  • [10] Dynamics regularization with tree-like structures
    Nieuwenhuis, Rochelle
    Kubota, Madoka
    Flynn, M. R.
    Kimura, Masayuki
    Hikihara, Takashi
    Putkaradze, Vakhtang
    APPLIED MATHEMATICAL MODELLING, 2018, 55 : 205 - 223