A Fenchel-Moreau Theorem for (L)over-bar0-Valued Functions

被引:0
|
作者
Drapeau, Samuel [1 ,2 ]
Jamneshan, Asgar [3 ]
Kupper, Michael [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, 211 West Huaihai Rd, Shanghai, Peoples R China
[2] China Acad Financial Res CAFR SAIF, 211 West Huaihai Rd, Shanghai, Peoples R China
[3] Univ Konstanz, Dept Math & Stat, D-78464 Constance, Germany
关键词
Fenchel-Moreau theorem; vector duality; semi-continuous extension; conditional functional analysis; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Fenchel-Moreau type theorem for proper convex functions f : X -> (L) over bar (0), where (X,Y,<.,.>) is a dual pair of Banach spaces and (L) over bar (0) is the space of all extended real-valued functions on a sigma-finite measure space. We introduce the concept of stable lower semi-continuity which is shown to be equivalent to the existence of a dual representation f(x) = sup(y is an element of L0(Y)) {< x, y > - f*(y)}, x is an element of X, where L-0(Y) is the space of all strongly measurable functions with values in Y, and <.,.> is understood pointwise almost everywhere. The proof is based on a conditional extension result and conditional functional analysis.
引用
收藏
页码:593 / 603
页数:11
相关论文
共 50 条
  • [1] THE FENCHEL-MOREAU THEOREM FOR SET-FUNCTIONS
    LAI, HC
    LIN, LJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) : 85 - 90
  • [2] A Minimax Theorem for (L)over-bar0-Valued Functions on Random Normed Modules
    Zhao, Shien
    Zhao, Yuan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [3] A GENERALIZATION OF THE FENCHEL-MOREAU THEOREM
    KOSHI, S
    KOMURO, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1983, 59 (05) : 178 - 181
  • [4] On generalized Fenchel-Moreau theorem and second-order characterization for convex vector functions
    Phan Nhat Tinh
    Kim, Do Sang
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [5] On generalized Fenchel-Moreau theorem and second-order characterization for convex vector functions
    Phan Nhat Tinh
    Do Sang Kim
    Fixed Point Theory and Applications, 2013
  • [6] Fenchel-Moreau conjugation for lower semi-continuous functions
    Cotrina, John
    Karas, Elizabeth W.
    Ribeiro, Ademir A.
    Sosa, Wilfredo
    Yuan, Jin Y.
    OPTIMIZATION, 2011, 60 (8-9) : 1045 - 1057
  • [7] Ekeland's variational principle for an (L)over-bar0-valued function on a complete random metric space
    Guo, Tiexin
    Yang, Yujie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 1 - 14
  • [8] Measurements of vertical bar V-cb vertical bar form factors and branching fractions in the decays (B)over-bar(0)->D(*+)l(-)(nu)over-bar(l) and (B)over-bar(0)->D(+)l(-)(nu)over-bar(l)
    Buskulic, D
    DeBonis, I
    Decamp, D
    Ghez, P
    Goy, C
    Lees, JP
    Lucotte, A
    Minard, MN
    Nief, JY
    Odier, P
    Pietrzyk, B
    Casado, MP
    Chmeissani, M
    Comas, P
    Crespo, JM
    Delfino, M
    Efthymiopoulos, I
    Fernandez, E
    FernandezBosman, M
    Garrido, L
    Juste, A
    Martinez, M
    Orteu, S
    Padilla, C
    Park, IC
    Pascual, A
    Perlas, JA
    Riu, I
    Sanchez, F
    Teubert, F
    Colaleo, A
    Creanza, D
    dePalma, M
    Gelao, G
    Girone, M
    Iaselli, G
    Maggi, G
    Maggi, M
    Marinelli, N
    Nuzzo, S
    Ranieri, A
    Raso, G
    Ruggieri, F
    Selvaggi, G
    Silvestris, L
    Tempesta, P
    Tricomi, A
    Zito, G
    Huang, X
    Lin, J
    PHYSICS LETTERS B, 1997, 395 (3-4) : 373 - 387
  • [9] K0L → π0l(l)over-bar searches at KTeV
    Whitmore, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 142 : 62 - 67
  • [10] Improved unitarity bounds for (B)over-bar-0→π+l-(ν)over-bar-l decays
    Mannel, T
    Postler, B
    NUCLEAR PHYSICS B, 1998, 535 (1-2) : 372 - 386