Dispersive photonic crystals from the plane wave method

被引:7
|
作者
Guevara-Cabrera, E. [1 ]
Palomino-Ovando, M. A. [1 ]
Flores-Desirena, B. [1 ]
Gaspar-Armenta, J. A. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Apdo Post 165, Puebla 72000, Pue, Mexico
[2] Univ Sonora Apdo, Dept Invest Fis, Post 5-088, Hermosillo 83190, Sonora, Mexico
关键词
Polaritonic photonic crystals; Dispersive photonic crystals; Polaritonic materials; 2-DIMENSIONAL PERIODIC-SYSTEMS; BAND-STRUCTURES; FREQUENCY;
D O I
10.1016/j.physb.2015.12.030
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap-midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap-midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [1] Reformulation of the plane wave method to model photonic crystals
    Zoli, R
    Gnan, M
    Castaldini, D
    Bellanca, G
    Bassi, P
    OPTICS EXPRESS, 2003, 11 (22): : 2905 - 2910
  • [2] Application of group theory to plane wave expansion method for photonic crystals
    Zhang, HT
    Wang, DS
    Gong, ML
    Zhao, DZ
    OPTICS COMMUNICATIONS, 2004, 237 (1-3) : 179 - 187
  • [3] Extended plane-wave-based transfer-matrix approach to simulating dispersive photonic crystals
    Zeng, Yong
    Fu, Ying
    Chen, Xiaoshuang
    Lu, Wei
    Agren, Hans
    SOLID STATE COMMUNICATIONS, 2006, 139 (07) : 328 - 333
  • [4] Plane wave method for out-of-plane propagation in 2D photonic crystals
    Glushko, Alexander
    MMET 2006: 11th International Conference on Mathematical Methods in Electromagnetic Theory, Conference Proceedings, 2006, : 406 - 408
  • [5] Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties
    Khromova, Irina A.
    Melnikov, Leonid A.
    OPTICS COMMUNICATIONS, 2008, 281 (21) : 5458 - 5466
  • [6] Principles of the plane-wave transfer-matrix method for photonic crystals
    Li, ZY
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (07) : 837 - 841
  • [7] Analysis for the convergence problem of the plane-wave expansion method for photonic crystals
    Shen, LF
    He, SL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (05): : 1021 - 1024
  • [8] GSM/FEM modelling of plane wave scattering from photonic crystals with defects
    Freni, A
    Mias, C
    ELECTRONICS LETTERS, 2000, 36 (10) : 888 - 889
  • [9] A Generalized Floquet Hamiltonian Method for Dispersive Photonic Time Crystals
    Lu, Guangquan
    Wang, Neng
    PHOTONICS, 2025, 12 (03)
  • [10] Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals
    Hsue, YC
    Freeman, AJ
    Gu, BY
    PHYSICAL REVIEW B, 2005, 72 (19)